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We show that the weakly turbulent instability of anti–de Sitter space, recently found in P. Bizoń and

A. Rostworowski, Phys. Rev. Lett. 107, 031102 (2011) for 3þ 1-dimensional spherically symmetric

Einstein-massless-scalar field equations with negative cosmological constant, is present in all dimensions

dþ 1 for d � 3.

DOI: 10.1103/PhysRevD.84.085021 PACS numbers: 04.25.dc, 04.20.Ex

In a recent paper [1] two of us reported on numerical
simulations that indicate that anti–de Sitter (AdS) space in
3þ 1 dimensions is unstable against the formation of a
black hole under arbitrarily small generic perturbations.
This instability was conjectured to be triggered by a reso-
nant mode mixing that moves energy from low to high
frequencies. While the case of 3þ 1 dimensions is the
most interesting from the point of view of general relativ-
ity, it is natural to ask whether a corresponding result holds
in higher dþ 1 dimensions, in particular, in the case d ¼ 4
that is the most interesting from the point of view of the
AdS/CFT correspondence. In this paper we answer this
question in the positive, that is we show that AdSdþ1 is
unstable under arbitrarily small generic perturbations in all
supercritical dimensions d � 3. To demonstrate that, we
first generalize the formalism of [1] to higher dimensions.
Second, we recall from [1] the key mechanism that
generates instability and point out that this mechanism
operates in all dimensions d � 3. Third, we support this
analytic argument by numerical simulations of weakly
perturbed AdS5. Finally, we comment on a recent work
by Garfinkle and Pando Zayas [2] who looked at the same
problem but did not find instability for small perturbations.

We parametrize the ðdþ 1Þ-dimensional asymptotically
AdS metric by the ansatz

ds2 ¼ ‘2

cos2x
ð�Ae�2�dt2 þ A�1dx2 þ sin2xd�2

d�1Þ; (1)

where ‘2 ¼ �dðd� 1Þ=ð2�Þ, d�2
d�1 is the round metric

on Sd�1, �1< t <1, 0 � x < �=2, and A, � are func-
tions of ðt; xÞ. For this ansatz the evolution of a self-
gravitating massless scalar field �ðt; xÞ is governed by
the following system (using units in which 8�G ¼ d� 1):

_� ¼ ðAe���Þ0; _� ¼ 1

tand�1x
ðtand�1xAe���Þ0; (2)

A0 ¼d�2þ2sin2x

sinxcosx
ð1�AÞ�sinxcosxAð�2þ�2Þ; (3)

�0 ¼ � sinx cosxð�2 þ�2Þ; (4)

where _¼ @t, 0 ¼ @x,� ¼ �0, and� ¼ A�1e� _�. We want
to solve the system (2)–(4) for small smooth perturbations
of AdS solution � ¼ 0, A ¼ 1, � ¼ 0. Smoothness at the
center implies that near x ¼ 0

�ðt; xÞ ¼ f0ðtÞ þOðx2Þ; �ðt; xÞ ¼ Oðx2Þ;
Aðt; xÞ ¼ 1þOðx2Þ; (5)

where we used normalization �ðt; 0Þ ¼ 0 so that t is the
proper time at the center. Smoothness at spatial infinity and
finiteness of the total mass M imply that near x ¼ �=2 we
must have (using � ¼ �=2� x)

�ðt;xÞ¼ f1ðtÞ�dþOð�dþ2Þ; �ðt;xÞ¼�1ðtÞþOð�2dÞ;
Aðt;xÞ¼ 1�M�dþOð�dþ2Þ; (6)

where the power series expansions are uniquely deter-
mined by M and the functions f1ðtÞ, �1ðtÞ (which in
turn are determined by the evolution of initial data). One
can show that the initial-boundary value problem for the
system (2)–(4) together with the regularity conditions (5)
and (6) is locally well posed.
In [1] the instability of AdS4 was conjectured to result

from the resonant mode mixing that moves energy from
low to high frequencies. It was argued that this process of
energy concentration on increasingly small spatial scales
must be eventually cut off by the formation of a black hole.
It is easy to see that the same mechanism is at work for all
d � 3. This follows from the fact that, using the PDE
terminology, the system (2)–(4) is fully resonant. More
precisely, the spectrum of the linear self-adjoint operator,
which governs the evolution of linearized perturbations of
AdSdþ1, L ¼ �tan1�dx@xðtand�1x@xÞ, is given by !2

j ¼
ðdþ 2jÞ2; ðj ¼ 0; 1; . . .Þ. The key point is that the frequen-
cies !j are equally spaced, so already at the third order of

nonlinear perturbation analysis one gets resonant terms for
any frequency !j such that j ¼ j1 þ j2 � j3, where jk are

indices of eigenmodes present in the initial data. Some of
these resonances lead to secular terms that signal the onset
of instability at time t ¼ Oð"�2Þ, where " measures the
size of initial data.
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To substantiate this heuristic argument we solve the
system (2)–(4) in d ¼ 4 numerically, using the method of
[1]. For easy comparison of our results with those of
Garfinkle and Pando Zayas, we take the same approxi-
mately ingoing Gaussian initial data as Ref. [2]: �ð0; xÞ ¼
@x�ð0; xÞ ¼ �ð0; xÞ, where

�ð0; xÞ ¼ "
ffiffiffi

3
p exp

�

�ðtanx� r0Þ2
�2

�

(7)

with r0 ¼ 4, � ¼ 1:5. As in [2] we set the AdS radius ‘ ¼
1, hence their and our radial coordinates are related by r ¼
tanx, while the time coordinates are identical. We denote
their amplitude A by " (to avoid conflict of notation); the

factor 1=
ffiffiffi

3
p

comes from the difference in units: we use
8�G ¼ 3, while in [2] 8�G ¼ 1. Note that the data (7)
slightly violate the regularity condition (5) since �ð0; 0Þ is

not exactly zero; however, an error generated by this
‘‘corner singularity’’ is negligible.
For large ", the solution quickly collapses (the formation

of an apparent horizon is detected by the metric function
Aðt; xÞ touching zero at some xH). As " decreases, the
horizon radius takes the form of the right continuous
sawtooth curve xHð"Þ (see Fig. 1 of [1]) with jumps at
critical points "n where lim"!"þn xHð"Þ ¼ 0 (the index n

counts the number of reflections from the AdS boundary
before collapse). Accordingly, the time of horizon forma-
tion tHð"Þ is a monotone decreasing piecewise continuous
function with jumps at each "n (see Fig. 1).
For small initial data the weakly nonlinear perturbation

analysis described in [1] predicts the onset of instability at
time t� "�2. Numerics indicates that for sufficiently small
" this scaling holds approximately almost all the way to
collapse, that is tHð"Þ � "�2 as well. The evidence for this
fact is shown in Fig. 2 that depicts the evolution of three

solutions with small amplitudes differing by a factor of
ffiffiffi

2
p
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FIG. 1 (color online). Time of horizon formation tH vs ampli-
tude for initial data (7). (Top) First ‘‘step’’ of the ‘‘staircase’’
function tHð"Þ corresponding to large data solutions that collapse
during the first implosion. The horizon radius varies from xH ¼
0:5 to zero (from right to left). For " > 0:005, the plot coincides
with Fig. 4 of [2] which verifies that our results agree with those
of [2] for short enough times. (Bottom) A few further steps of
tHð"Þ corresponding to solutions that bounce several times from
the AdS boundary before collapsing.
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FIG. 2 (color online). (Top) Upper envelope of �2ðt; 0Þ for
initial data (7) with three relatively small amplitudes. After
making 95 (for " ¼ 0:0002), 198 (for " ¼ ffiffiffi

2
p � 0:0001), and

405 (for " ¼ 0:0001) reflections, all solutions eventually col-
lapse. (Bottom) Curves from the upper plot after rescaling
"�2�2ð"2t; 0Þ seem to converge to a limiting curve.
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Note that this scaling implies that the computational cost of
numerical evolution increases rapidly as " decreases (since
solutions have to be evolved for longer and longer times on
finer and finer grids).

Finally, let us comment on the paper [2]. The abstract of
that paper states: ‘‘We [. . .] establish that for small values
of the initial amplitude of the scalar field there is no [sic]
black hole formation, rather, the scalar field performs an
oscillatory motion typical of geodesics in AdS.’’ This
assertion, as we have shown above, is false so one might
wonder what led the authors of [2] to reach this conclusion.
The only ‘‘evidence’’ is given in Fig. 2 of [2], which
depicts the solution with small amplitude " ¼ 0:0002
bouncing 4 times without forming a horizon. Concluding
from this that ‘‘the scalar field performs an oscillatory
motion’’ forever and a horizon will never form is a com-
pletely unjustified extrapolation. Our numerical evolution
of the same data (shown in Fig. 2) yields horizon formation
at xH � 4:8� 10�4 after time tH � 299:8. The numerical
method used by Garfinkle and Pando Zayas was too crude
to simulate evolution for so long times. Their code is based
on the second order finite difference method on a fixed
nonuniform grid using uncompactified radial coordinate r.
The AdS timelike boundary at r ¼ 1 is mimicked by an
artificial reflecting mirror at rmax ¼ 10, which introduces a

small error at each bounce (since the pulse gets reflected
before reaching the true boundary). However, the key
obstacle that prevented the authors of [2] to run reliable
simulations for longer times was the lack of sufficient
resolution of their code. In particular, their code could
not capture the spatio-temporal structure of horizon for-
mation for the data with amplitude " ¼ 0:0002 since this
structure develops below the first point of the grid. For
comparison, our fourth-order code with global adaptive
mesh refinement reached the level of 217 þ 1 grid points
just before collapse. The lesson is that the long-time nu-
merical simulations of asymptotically AdS spacetimes are
challenging even in spherical symmetry, and one should be
careful in jumping to conclusions about the late time
dynamics, especially without an analytic understanding
of the problem.
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