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We consider three-dimensional anti–de Sitter (AdS) gravity minimally coupled to a massless scalar

field and study numerically the evolution of small smooth circularly symmetric perturbations of the AdS3
spacetime. As in higher dimensions, for a large class of perturbations, we observe a turbulent cascade of

energy to high frequencies which entails instability of AdS3. However, in contrast to higher dimensions,

the cascade cannot be terminated by black hole formation because small perturbations have energy below

the black hole threshold. This situation appears to be challenging for the cosmic censor. Analyzing the

energy spectrum of the cascade we determine the width �ðtÞ of the analyticity strip of solutions in the

complex spatial plane and argue by extrapolation that �ðtÞ does not vanish in finite time. This provides

evidence that the turbulence is too weak to produce a naked singularity and the solutions remain globally

regular in time, in accordance with the cosmic censorship hypothesis.
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Introduction.—Asymptotically anti–de Sitter (AdS)
spacetimes have come to play a central role in theoretical
physics, prominently due to the celebrated AdS/CFT
correspondence which conjectures a gauge/gravity duality.
By the positive energy theorem, AdS spacetime is a ground
state among asymptotically AdS spacetimes, much as
Minkowski spacetime is a ground state among asymptoti-
cally flat spacetimes. However, the evolutions of small
perturbations of these ground states are very different. In
the case of Minkowski, small perturbations disperse to
infinity and the spacetime is asymptotically stable [1]. In
contrast, asymptotic stability of AdS is precluded because
the conformal boundary acts like a mirror at which pertur-
bations propagating outwards bounce off and return to the
bulk. This gives rise to complex nonlinear wave interac-
tions, the understanding of which is the key to the problem
of stability of AdS spacetime.

In our recent joint work with Rostworowski [2,3] on
spherically symmetric massless scalar field minimally
coupled to AdS gravity in dimensions D � 4, we gave
numerical and perturbative evidence for the instability of
AdSD. More precisely, we showed that there is a large class
of arbitrarily small perturbations ofAdSD that evolve into a
black hole after a time of order Oð"�2Þ, where " measures
the size of a perturbation. On the basis of nonlinear per-
turbation analysis, we conjectured that this instability is
due to a resonant transfer of energy from low to high
frequencies, or, equivalently, from coarse to fine spatial
scales, until eventually an apparent horizon forms. This
mechanism is reminiscent of the turbulent energy cascade
in fluids (with black hole formation being the analogue of
the viscous cutoff).

Further studies of the same model confirmed and
extended our findings [4] and provided important new

insights concerning the role of the negative cosmological
constant [5], the existence of time-periodic solutions
[6], and the transition between turbulent and nonturbulent
regimes [7]. The coexistence of turbulent and time-
periodic solutions (geons) was also demonstrated for
the vacuum Einstein equations (without any symmetry
assumptions) using nonlinear perturbation analysis [8].
In this Letter we consider the problem of stability of

AdS3. The salient feature of AdS gravity in three
dimensions is a mass gap between AdS3 and the lightest
black hole solution, whose mass thereby provides the
threshold for black hole formation (we recall that there is
no such threshold in D � 4). Since small perturbations
have energy below this threshold, they cannot evolve
into black holes; thus, we are left with a dichotomy:
naked singularity formation or global-in-time regularity.
Resolving this dichotomy numerically is challenging
because in three dimensions the rate of the transfer of
energy to high frequencies is much faster than in higher
dimensions, which puts stringent demands on the spatial
resolution and severely limits the times accessible in
simulations. Below, we will get evidence against singular-
ity formation by employing the so-called analyticity strip
method introduced by Sulem et al. [9]. This method
makes use of the fact that a real singularity does not
come out of the blue but emerges when a complex singu-
larity hits the real axis. Thus, tracing the motion of
complex singularities and showing that they never touch
the real axis provides evidence for global-in-time
regularity.
Model.—As in [2,3], we investigate the problem of

stability of AdS3 within the Einstein-scalar field model

G�� þ�g�� ¼ �T��; g��r�r�� ¼ 0; (1)
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where T�� ¼ @��@��� ð1=2Þg��ð@�Þ2 is the stress-

energy tensor of the scalar field and �< 0 is the cosmo-
logical constant. Assuming the circular symmetry for the
scalar field � ¼ �ð�; rÞ and the metric

ds2 ¼ � ~Ae�2�d�2 þ ~A�1dr2 þ r2d’2; (2)

where ~A and � are functions of (�, r) we get the wave
equation

@�ð ~A�1e�@��Þ ¼ 1

r
@rðr ~Ae��@r�Þ; (3)

and the Einstein equations

@r� ¼ ��rS; (4)

@r ~A ¼ ��r ~AS� 2�r; (5)

@� ~A ¼ �2�r ~A@��@r�; (6)

where S ¼ ~A2e�2�ð@t�Þ2 þ ð@r�Þ2. For � ¼ 0 (vacuum),
these equations have a one-parameter family of static

solutions � ¼ 0, ~A¼1�Mþr2=‘2, where ‘¼ð��Þ�1=2

is the length scale andM � 0 is the total mass. This family
includes the pure AdS space for M ¼ 0 and BTZ black
holes for M � 1 [10]. For 0<M< 1 the solutions have
a conical singularity akin to the presence of a point mass
at the origin [11].

Remark.—If � ¼ 0 then it follows from Eqs. (4) and (5)

and the boundary conditions ~Að�; 0Þ ¼ 1 and �ð�; 0Þ ¼ 0

that ~Ae�� � 1; hence, Eq. (3) reduces to the radial wave
equation in flat spacetime. For any finite-energy solution of
this equation one can integrate (5) to get

~Að�; rÞ ¼ exp

�
��

Z r

0
Sð�; r0Þr0dr0

�
; (7)

thus ~Að�; rÞ is bounded away from zero for all times. This
reflects a well-known fact that in three-dimensional gravity
with � ¼ 0 and matter satisfying the dominant energy
condition there are no trapped surfaces [12].

It is convenient to define dimensionless coordinates
ðt; xÞ 2 ð�1;1Þ � ½0; �=2Þ by � ¼ ‘t and r ¼ ‘ tanx. In

terms of these coordinates and A ¼ ð1þ r2=‘2Þ�1 ~A, the
metric (2) takes the form

ds2 ¼ ‘2

cos2x
ð�Ae�2�dt2 þ A�1dx2 þ sin2xd’2Þ: (8)

In the following we denote derivatives with respect to t and
x by overdots and primes, respectively, and define auxiliary

variables� ¼ �0 and� ¼ A�1e� _�. We use a unit of mass
such that � ¼ 1 and a unit of length such that ‘ ¼ 1. Then,
the wave equation (3) expressed in the first order form
reads

_� ¼ ðAe���Þ0; _� ¼ 1

tanx
ðtanxAe���Þ0: (9)

and the system (4)–(6) becomes

�0 ¼ � sinx cosxð�2 þ�2Þ; (10)

A0 ¼ � sinx cosxAð�2 þ�2Þ þ 2 tanxð1� AÞ; (11)

_A ¼ �2 sinx cosxe��A2��: (12)

We require solutions to be smooth. This implies that near
x ¼ 0 the fields behave as follows

�ðt; xÞ ¼ f0ðtÞ þOðx2Þ; �ðt; xÞ ¼ Oðx2Þ;
Aðt; xÞ ¼ 1þOðx2Þ; (13)

where we used the normalization �ðt; 0Þ ¼ 0 so that t be
the proper time at the center. Near spatial infinity we
assume that (using � ¼ �=2� x)

�ðt; xÞ ¼ f1ðtÞ�2 þOð�4Þ;
�ðt; xÞ ¼ �1ðtÞ þOð�4Þ;
Aðt; xÞ ¼ 1�M�2 þOð�4Þ;

(14)

where the power series are uniquely determined by a
constantM and functions f1ðtÞ and �1ðtÞ. These boundary
conditions ensure that the mass function defined by
mðt; xÞ :¼ ð1� AÞ=cos2x has a finite time-independent
limit M ¼ limx!�=2mðt; xÞ. It follows from Eq. (11) that

m0 ¼ tanxAð�2 þ�2Þ; (15)

hence, mðt; xÞ is monotonically increasing with x. This
implies that for M< 1, the function Aðt; xÞ is uniformly
bounded away from zero and consequently no apparent
horizon can form in the evolution.
Spectral properties.—It follows from Eq. (9) that linear

perturbations ofAdS3 (� ¼ 0, � ¼ 0, A ¼ 1) are governed
by the self-adjoint operator L ¼ �ðtanxÞ�1@xðtanx@xÞ on
the Hilbert space L2ð½0; �=2�; tanxdxÞ. The spectrum of L
is !2

k ¼ ð2þ 2kÞ2 (k ¼ 0; 1; . . . ) and the corresponding

orthonormal eigenfunctions are given by the Jacobi

polynomials ekðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
cos2xP0;1

k ðcos2xÞ. We shall

denote the L2-inner product by ðf; gÞ :¼ R�=2
0 fðxÞgðxÞ�

tanxdx. To analyze the spectral decomposition of solutions

we define projections �k :¼ ð ffiffiffiffi
A

p
�; e0kÞ and �k :¼

ð ffiffiffiffi
A

p
�; ekÞ. Then, using Eq. (15) and the orthogonality

relation ðe0j; e0kÞ ¼ !2
k�jk we can express the total mass as

the Parseval sum

M ¼
Z �=2

0
ðA�2 þ A�2Þ tanxdx ¼ X1

k¼0

EkðtÞ; (16)

where Ek :¼ �2
k þ!�2

k �2
k can be interpreted as the

energy of the kth mode.
Methods.—We solve numerically the system (9)–(11)

with the boundary conditions (13) and (14). We use the
standard method of lines with the fourth-order Runge-
Kutta time integration and fourth-order spatial finite
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differences. Kreiss-Oliger dissipation is added to eliminate
high-frequency instabilities. The scheme is fully con-
strained, that is the metric functions A and � are updated
at each time step by solving the slicing condition (10) and
the Hamiltonian constraint (11). The momentum constraint
(12) is only monitored to verify the accuracy of computa-
tions. To improve the balance between the spatial resolu-
tion and duration of simulations, we refine the entire spatial
grid when a global spatial error exceeds some prescribed
tolerance level. This method is computationally expensive
but very stable. We usually start on a grid with 212 points
and allow for four levels of refinement.

In order to extract information about regularity of solu-
tions from numerical data, we shall use the analyticity strip
method [9]. This method is based on the following idea.
Consider a solution uðt; xÞ of some nonlinear evolution
equation for real-analytic initial data and let uðt; zÞ be its
analytic extension to the complex plane of the spatial
variable. Typically, uðt; zÞ will have complex singularities
(coming in complex-conjugate pairs) which move in time.
If a complex singularity hits the real axis, the solution
becomes singular in the real world. The imaginary part
of the complex singularity z ¼ xþ i� closest to the real
axis measures the width of the analyticity strip around the
real axis. Thus, monitoring the time evolution of �ðtÞ and
checking if it vanishes (or not) in a finite time, one can
predict (or exclude) the blowup. The key observation is
that the value of � is encoded in the asymptotic behavior of
Fourier coefficients of uðt; xÞ which decay exponentially as
expð��kÞ for large k (with an algebraic prefactor depend-
ing on the type of the singularity), see, e.g., [13].
Therefore, �ðtÞ can be obtained by fitting an exponential
decay to the tail of the numerically computed Fourier
spectrum.

Results.—We solved Eqs. (9)–(11) for a variety of small
initial data. By small we mean that the total mass M � 1
(note that in 3D gravity the mass M is scale invariant).
For typical initial data the dynamics is turbulent. The
heuristic explanation of the mechanism which triggers
the turbulent behavior is the same as in higher dimensions,
namely, the generation of secular terms by four-wave
resonant interactions [2,3], so we shall not elaborate on
this here. For the sake of completeness, we mention that for
some solutions the mechanism of transferring energy to
high frequencies is not active, which is probably due to the
fact that their initial data belong to stability islands around
time-periodic solutions [6]. Such nonturbulent solutions
need not concern us here.

The results presented below were generated from the
time-symmetric Gaussian initial data of the form

�ð0; xÞ ¼ " expð�tan2x=	2Þ; _�ð0; xÞ ¼ 0 (17)

with width 	 ¼ 1=32 and varying small amplitudes ". For
these data, the evidence for the expected fourth-order con-
vergence is shown in Fig. 1. The loss of convergence

(which is inevitable in numerical simulations of turbulent
phenomena) is clearly apparent beyond some ‘‘reliability
time’’ signaling that the small scales become unresolved.
We estimate that the reliability time corresponding to the
smallest amplitude " ¼ 0:3 and the highest resolution 216

used in our simulations is about 230 and, consequently, we
did not use any longer-time data in our analysis.
A quantity of fundamental interest for the understanding

of turbulent dynamics is that of the energy spectrum, that is
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FIG. 1 (color online). Results of convergence tests from runs
performed on grids of size 2n for n from 10 to 16 [for the initial
data (17) with " ¼ 0:3). The convergence factor for the solution
�n computed on the 2n grid is defined by Qn ¼ k�n �
�nþ1k=k�nþ1 ��nþ2k, where k � k is the spatial ‘2 norm. By
convention, we define the reliability time for the run on the 2n

grid as the time when Qn deviates from the expected value 24 by,
say, 7% (depicted by the horizontal dashed line). We find
empirically that the reliability time scales linearly with the
product n"�2.
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FIG. 2 (color online). Energy spectra at three instants of time
for the initial data (17) with " ¼ 0:3 (which gives M ¼ 0:044).
The fit of the formula (18) in the interval 10< k< 1000 to the
data at t ¼ 230 is depicted by the black dotted line. The inset
displays the same plot in the linear-log scale to better see the
exponential decay of the tails.
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the distribution of the total energy over the modes of the
linearized problem, as given in (16). Figure 2 shows how
the energy spectrum develops in time. The range of fre-
quencies participating in the evolution is seen to increase
very rapidly (cf. [14] where an analogous plot of the energy
spectrum in 4D is shown).

In accord with the analyticity strip method we assume
that for large wave numbers the energy spectrum is
described by the formula

EkðtÞ ¼ CðtÞk��ðtÞe�2�ðtÞk: (18)

Fitting this formula to the numerical data at a sequence of
times we obtained the time dependence of the parameters
CðtÞ, �ðtÞ, and �ðtÞ. We found that the width of analyticity
�ðtÞ stays bounded away from zero and after some tran-
sient period is well approximated by the exponential decay

�ðtÞ ¼ �0e
�t=T; (19)

where T is a characteristic decay time. The evidence for
(19) is shown in Fig. 3. We find that �0 is approximately
independent of ", while T / "�2. At the reliability time
�ðtÞ is of the order of hundred mesh sizes, reassuring us
that the fitting procedure is self-consistent and credible.
Despite the good quality of the fit, it would probably be
premature to extrapolate the exact behavior (19) indefi-
nitely; actually, we suspect that crossovers to faster (but
still exponential) decay may occur at later times. Anyway,
the results suggest that �ðtÞ does not vanish in a finite time
and, consequently, the solutions remain smooth forever. Of
course, higher resolution simulations would be helpful in
validating or refuting this conjecture.

The exponentially fast shrinking of the width of analy-
ticity is reflected in the exponentially fast growth of higher

Sobolev norms Hs with s > 1, implying the instability of
AdS3. This is illustrated in Fig. 4 which depicts the time
evolution of the second homogenous Sobolev norm _H2.
After an initial quiescent period, whose duration scales as
"�2, the maxima of _H2ðtÞ begin to grow exponentially
approximately as expðt=TÞ [as could be guessed from
(19) by dimensional analysis].
Conclusions.—The numerical results presented above

indicate that initially smooth small perturbations of AdS3
remain smooth forever; however, they do not remain small
in any reasonable norm that captures the turbulent behav-
ior; hence, AdS3 is unstable. This kind of gradual loss of
regularity, where solutions develop progressively finer
spatial scales as t ! 1 without ever losing smoothness
(sometimes referred to as weak turbulence), has been well
known in fluid dynamics, for example it has been proved
for the incompressible Euler equation in two spatial dimen-
sions [15,16]. More recent studies show that weak turbu-
lence is common for nonlinear wave equations in bounded
domains, see, e.g., [17–20]. We point out that in the case of
Einstein’s equations, the weakly turbulent dynamics can
proceed forever only in three dimensions, whereas in
higher dimensions it is unavoidably cut off in finite time
by the black hole formation.
Above we discussed only small mass solutions but we

observed a very similar behavior in the whole range
0<M< 1 so it is tempting to conjecture and presumably
feasible to prove rigorously [21] that all solutions in this
range of masses are globally regular in time. Such a finite
energy threshold for blowup is typical for nonlinear wave
equations in critical dimensions where a finite amount of
energy must concentrate to produce a singularity, a notable
example being 3D wave maps [22]. Finally, let us mention
that the threshold at M ¼ 1 was investigated numerically
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in [23] leading to important insights about the near-critical
dynamics; however, the critical solution itself remains not
understood [24].
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