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Abstract
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1 Introduction

Financial contagion is intuitively defined as a shock to one country’s asset market that
causes changes in asset prices in another country’s financial market. Understanding and
describing contagion is essential for coping with financial crises such as the Asian financial
crisis of the late 1990’s, the subprime mortgage crisis in August 2007 or debt crisis in
2011. For these reasons, financial contagion has recently attracted the attention of several
theoretists and practitioners working on finance due to its dramatical effects and many
different definitions of contagion have been proposed (compare [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11]). In fact, the presence of financial contagion among markets can mitigate the effects of
diversification of investments precisely when they are needed most. Furthermore it became
a great challenge for the international financial institution like The International Monetary
Fund or European Central Bank.

In this paper we follow the approach provided by Bradley and Taqqu [3, 4, 2], using
copula representations [7]. The idea is that there is a contagion from market X to market
Y when dependence between X and Y is stronger when X is in crisis (comparing to
normal times). In other words there is more dependence in the loss distribution of X than
in the center. We will refer to such type of contagion as spatial contagion in order to
underline the fact that it relates to areas of the whole distribution of X and Y rather than
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time-varying volatility of X. For contagion measurement, the normal copula is chosen
as benchmark copula that is contagion free. The investigation of conditional copulas in
Gaussian framework is held and some useful theorems of monotonic properties of measures
of concordance are proven (with respect to conditioning parameters). The explicit form of
the r-invariant set on which contagion should be tested is suggested. (where r is parameter
of Gaussian copula).

The main goal of this paper is to extend the results obtained by Durante and Jaworski
in [7] for time series of multidimensional GARCH type. The assumption that time series
follows mGARCH dynamics is made and investigation of the contagion effect is considered.
Seven different mGARCH models are considered, including classical multivariate models
(BEKK, DCC) as well as copula-GARCH models. All of the models are based more or less
on normal or Student distributions and are considered in general fit framework.

The main result is that models with estimation procedure, which could be separated
into two steps (first margins, then dependence), provide poor fit for contagion modeling
(within the class of models constructed for general fit, rather than contagion modelling).
In other words, it is shown that contagion effect in most of the empirically used copula-
GARCH models is not strong enough in contrary to BEKK model, which performs quite
well.

We also present some general remarks on models constructed for contagion fit. We
present some statistics for mGARCH contagion-fit models with Clayton and Survival Gum-
bel copulas. Using these models one improves the description of the contagion effect but
might make the general fit worse.

The paper is so organized. In section 2 we recall some basic facts about copulas and
conditioning sets. The formal definition of contagion is presented in Section 3. Section 4
provides useful theorems about limit behavior of conditioned copulas as well as it’s mono-
tonic properties for Gaussian family. Here, we also present some tables and graphics which
illustrate the theorems. In Section 5 we investigate sets on which contagion should be
testes, when taking normal copula as benchmark model. We also provide the explicit form
of the set, which is invariant to Gaussian copula correlation parameter, while still being
accurate for test purposes. Description of seven mGARCH models on which contagion will
be tested is given in Section 6. In Section 7 we examine the presence of contagion effect
between two stock indices – FTSE and DAX. We compare contagion fit between standard
approach (as in [7]) and the one with mGARCH dynamics. Next we present some statis-
tics for all of the models. We conclude in Section 8, while Section 9 consists of proofs for
previously stated Propositions and Theorems.

2 Preliminaries

In this paper we will partially adopt notation used in [7] in further work. Let X and
Y be two continuous random variables defined on the same probability space (Ω,Σ, P ).
H(x, y) = P [X ≤ x, Y ≤ y] will be their joint distribution function, F (x) = H(x,∞),
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G(y) = H(∞, y) will be margins and C will be their copula. Using Sklar’s theorem we can
couple this functions with formulaH(x, y) = C(F (x), G(y)) (compare [12, 13, 14, 15, 16, 17,
18, 20]). We can also state C(u, v) = H(F [−1](u), G[−1](v)). It is also worth noticing that
C is a joint distribution function with uniform margins. By F [−1](α) = inf {x : F (x) ≥ α}
we will understand the quantile function of F (see [14, 19]).

Given a Borel set B in R̄2 such that P ({ω ∈ Ω : (X(ω), Y (ω)) ∈ B}) > 0 we can
define conditional distribution HB for all (x, y) ∈ B by:

HB(x, y) = P [X ≤ x, Y ≤ y|(X, Y ) ∈ B]

If necessary, we will assume the existence of regular conditional probabilities. In this
paper we will assume that B is a rectangle. For such B it is very easy to obtain conditional
copula from conditional distribution function. Let B = [a1, a2] × [b1, b2] and let R =
[F [−1](a1), F

[−1](a2)]× [F [−1](b1), F
[−1](b2)]. Then we can define conditional copula:

CR(u, v) := HB(F
[−1]
B (u), G

[−1]
B (v))

It is easy to show that CR only depends on values of C in R (see [7] for details).
From now on we will focus on rectangles defined for copula function (that could be

expressed as quantiles for H). We will consider two different types of rectangles:

Definition 2.1. Let α1, α2 ∈ (0, 1) and β1, β2 ∈ (0, 0.5) then:

Tα1,α2 := [0, α1]× [0, α2] Mβ1,β2 := [β1, 1− β1]× [β2, 1− β2]

We will refer to them with tail set and central set.

3 Definitions of contagion

As we have said in the introduction, the notion of (spatial) contagion is related to the com-
parison of the dependence among two financial markets X and Y in some specific regions
of the domain of their joint distribution. At a more theoretical level, all these concepts can
be translated in terms of comparisons among distribution functions and conditional distri-
bution functions with respect to some meaningful tail and central events, or, equivalently,
in terms of copulas and threshold copulas.

The most common way to compare the strength of dependence among two random pairs
is to consider the concordance ordering (called also positive quadrant dependence (shortly,
PQD) ordering) between their respective copulas. We recall that, given two copulas C1

and C2, we say that C1 is less PQD than C2 (and we write C1 �PQD C2) if,

∀(u, v) ∈ [0, 1]2 C1(u, v) ≤ C2(u, v)

(compare [14] Definition 2.8.1). We adopt the symbol ≺PQD in order to indicate the case
when C1 �PQD C2 but C1 6= C2 [13, 23]. With respect to this ordering, we have that, for
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any copula C, W �PQD C �PQD M . Moreover, a copula C is said to be positive quadrant
dependent if C �PQD Π.

Now, we are able to formulate the following definitions of contagion. Let Xt and Yt
be the time series representing returns of two financial markets. Suppose that they are
stationary and C is the copula of all (Xt, Yt).

Definition 3.1. We say that there is contagion of type 1 (from X to Y ) with respect to
Mβ,0 and Tα,1 if

CMβ,0
≺PQD CTα,1 .

Analogously, we say that there is contagion of type 2 (from Y to X) with respect to M0,β

and T1,α if
CM0,β

≺PQD CT1,α .

We say that there is symmetric contagion of type 3 (between X and Y ) with respect to
Mβ,β and Tα,α if

CMβ,β
≺PQD CTα,α .

Thus, contagion is defined as an increase of the dependence in some tail regions of the
joint distribution of (Xt, Yt) with respect to some central regions. Moreover, as just copu-
las describe the dependence among random variables, contagion refers to the comparison
among threshold copulas obtained with respect to tail regions or central regions of the unit
square.

This definition depends on choice of conditioning sets. As we will see, contagion (de-
fined as increase of dependence in the tails) could be observed in some regions in almost all
of the multivariate distributions (like normal or t-student), so choice of T and M is crucial.

From practical point of view, checking PQD condition of contagion might be problem-
atic (see [7] for discussion and [24, 25] for possible methods). We will use instead measures
of concordance. The two most known measures of concordance are Kendall’s τ and Spear-
man’s ρ. Let us remark a simple fact ([14, 26]):

Proposition 3.1. Let κ be measure of concordance. For any copulas C1 and C2 if C1 �PQD
C2 then κ(C1) ≤ κ(C2)

Because of it test of contagion could be based on comparison between values of κ of
central and tail set conditional copulas.

4 Concordance ordering and Spearman ρ for condi-

tional copulas

4.1 Limits for absolutely continuous copulas

An interesting problem related to threshold copulas given a conditioning set R is their
limit behaviour when R tends to a degenerate set of 2–Lebesgue measure 0. For threshold
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copulas CR , this limit behaviour has been investigated in [27, 28, 29, 30, 31, 32, 33]. Here,
we formulate some related results for the threshold copulas corresponding to central sets.

Proposition 4.1. Let C be an absolutely continuous copula with density c. If c is contin-
uous at the point

(
1
2
, 1
2

)
and c

(
1
2
, 1
2

)
6= 0, then the copula CMβ,β

converges uniformly to Π
when β tends to 1

2
, viz.

∀(u, v) ∈ [0, 1]2 CMβ,β
(u, v)

β→ 1
2−→ uv.

Proposition 4.2. Let C be an absolutely continuous copula with density c. If c is contin-
uous at all points of the set

{
1
2

}
× [0, 1], then the copula CMβ,0

converges uniformly to Π
when β → 1

2
, viz.

∀(u, v) ∈ [0, 1]2 CMβ,0
(u, v)

β→ 1
2−→ uv.

Analogous result can be formulated for CM0,β
.

4.2 Conditioning of a bivariate Gaussian copula

The study of Gaussian copula is important for test construction because it is an example
of copula which is contagion free.

We recall that the bivariate Gaussian copula is the copula of the bivariate normal
distribution. It depends on one parameter – the correlation r. We have

Gr(x, y) = Fr(F
−1(x), F−1(y))

and

∂1Gr(x, y) = F

(
F−1(y)− rF−1(x)√

1− r2

)
, for (x, y) 6= (0, 0),

where F is a standard univariate normal distribution (N(0, 1)) and Fr is a bivariate normal
distribution N(0,Σ) with covariance matrix

Σ =

(
1 r
r 1

)
.

Note that the Spearman’s ρ depends on r in the following way

ρ(Gr) =
6 arcsin(r/2)

π
.

Theorem 4.1. If r > 0 then the conditional Gaussian copula Gr,Tα,1 is increasing with α.

To describe the limiting behaviour of the functions we adopt the symbol O(∗). We say
that the function f(q) belongs to O(q−n) when q → −∞ if the limit

lim
q→−∞

qnf(q)

exists and is finite.
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Theorem 4.2. The conditional Gaussian copula Gr,Tα,1 tends to independence copula Π
when α→ 0+. Moreover

Gr,Tα,1(x, y) = xy +
1

F−1(α)

r√
1− r2

f(F−1(y))x lnx+O((F−1(α))−2).

Where f is density of F .

Corollary 4.1.

ρ(Gr,Tα,1) =
3r

2
√
π
√

1− r2
1

|F−1(α)|
+O(F−1(α)−2).

Theorem 4.3. If r > 0 then the conditional Gaussian copula Gr,Mβ,0
is decreasing with β.

Theorem 4.4. The conditional Gaussian copula Gr,Mβ,0
tends to Gaussian copula Gr when

β → 0+. Moreover for r > 0

Gr,Mβ,0
(x, y) = Gr(x, y)+[2Gr(x, y) + ∂1Gr(x, y)(1− 2x) + ∂2Gr(x, y)(1− 2y)− 1] β+O(β2).

Corollary 4.2. For r > 0

ρ(Gr,Mβ,0
) = ρ(Gr)− 6(1− ρ(Gr))β +O(β2).

For bivariate Gaussian copula with correlation coefficient r, the values of Spearman’s ρ
for Gr,Tα,1 and Gr,Mβ,0

are presented in Table 1 & 2. For values of Spearman’s ρ for Gr,Tα,α

and Gr,Mβ,β
see Tables 3 and 4. Note that if β → 0.5− then Gr,Mβ,0

and Gr,Mβ,β
tend to

independence copula Π. Similarly if α→ 0+ then Gr,Tα,1 tends to independence copula Π.
In Fig. 1 one can see plot of ρ(Gr,Tα,α), ρ(Gr,Mβ,β

) and

∆ρ(α) := ρ(Gr,Tα,α)− ρ(Gr,Mα,α)

as function of α for normal copula with r = 0.7.

5 Area of contagiency

In this section we will try to define proper tail and central sets for contagion measurement.
We will parametrize them with α and β, according to notation CTα,1 , CT1,α , CTα,α and
CMβ,0

, CM0,β
, CMβ,β

where type of conditioning set should be clear from the contex.

Let S = {(α, β) : 0 < α ≤ β < 0.5} be set of all allowable pairs for parameters (in-
equality comes from the fact, that we want to keep tail and central sets disjoint). For
given copula C and concordance measure κ we define the following sets:
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Table 1: ρ(Gr,Tα,1) for normal Copula

r�α 0.01 0.03 0.05 0.075 0.1 0.15 0.2 0.25
0.1 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
0.2 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09
0.3 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.14
0.4 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.5 0.15 0.17 0.18 0.20 0.21 0.22 0.24 0.25
0.6 0.20 0.22 0.24 0.25 0.26 0.28 0.30 0.32
0.7 0.26 0.29 0.30 0.32 0.33 0.36 0.38 0.40
0.8 0.34 0.37 0.39 0.41 0.43 0.46 0.48 0.50
0.9 0.47 0.52 0.54 0.57 0.58 0.61 0.64 0.66

Table 2: ρ(Gr,Mβ,0
) for normal Copula

r�β 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1 0.08 0.06 0.05 0.05 0.04 0.03 0.02 0.02
0.2 0.16 0.13 0.11 0.09 0.08 0.06 0.04 0.03
0.3 0.24 0.2 0.17 0.14 0.11 0.09 0.07 0.04
0.4 0.32 0.27 0.23 0.19 0.16 0.13 0.09 0.06
0.5 0.41 0.35 0.3 0.25 0.21 0.17 0.12 0.08
0.6 0.5 0.44 0.38 0.32 0.27 0.21 0.16 0.11
0.7 0.61 0.54 0.48 0.41 0.34 0.27 0.21 0.14
0.8 0.73 0.66 0.6 0.52 0.45 0.36 0.28 0.19
0.9 0.86 0.81 0.76 0.7 0.62 0.52 0.41 0.28

0.05 0.15 0.25 0.35 0.45

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.05 0.15 0.25 0.35 0.45

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.05 0.15 0.25 0.35 0.45

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 1: Plot of ρ(Gr,Tα,α), ρ(Gr,Mα,α) and ∆ρ(α) as functions of α for normal copula
(r = 0.7), α ∈ [0.05, 0.45]
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Table 3: ρ(Gr,Tα,α) for normal Copula

r�α 0.01 0.03 0.05 0.075 0.1 0.15 0.2 0.25
0.1 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.2 0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.05
0.3 0.04 0.05 0.05 0.06 0.06 0.07 0.08 0.08
0.4 0.04 0.07 0.08 0.09 0.09 0.10 0.11 0.12
0.5 0.09 0.10 0.11 0.12 0.13 0.15 0.16 0.17
0.6 0.11 0.14 0.15 0.17 0.18 0.20 0.22 0.24
0.7 0.17 0.20 0.22 0.24 0.25 0.28 0.30 0.32
0.8 0.25 0.29 0.32 0.34 0.35 0.38 0.41 0.43
0.9 0.41 0.46 0.48 0.51 0.53 0.56 0.59 0.61

Table 4: ρ(Gr,Mβ,β
) for normal Copula

r�α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1 0.06 0.04 0.03 0.02 0.01 0.01 0.00 0.00
0.2 0.13 0.09 0.06 0.04 0.03 0.02 0.01 0.01
0.3 0.19 0.14 0.10 0.07 0.05 0.03 0.02 0.01
0.4 0.27 0.20 0.14 0.10 0.07 0.04 0.02 0.01
0.5 0.35 0.26 0.19 0.14 0.09 0.06 0.03 0.01
0.6 0.45 0.35 0.26 0.19 0.13 0.08 0.04 0.02
0.7 0.56 0.45 0.35 0.26 0.18 0.12 0.07 0.03
0.8 0.69 0.59 0.49 0.38 0.28 0.18 0.10 0.05
0.9 0.84 0.78 0.70 0.60 0.48 0.34 0.21 0.10

A1,C :=
{

(α, β) ∈ S : κ(CTα,1) ≥ κ(CMβ,0
)
}

(1)

A2,C :=
{

(α, β) ∈ S : κ(CT1,α) ≥ κ(CM0,β
)
}

(2)

A3,C :=
{

(α, β) ∈ S : κ(CTα,α) ≥ κ(CMβ,β
)
}

(3)

From now on we will assume that κ := ρ (Spearman’s ρ). The results for other measures
of concordance are similar. For ρ as κ, we will call A1,C and A2,C contagion sets of copula C
(type 1 and 2 contagion) and A3,C symmetric contagion set of copula C (type 3 contagion).
The problem is that even for copulas that are considered contagion-free (f.e. normal) the
contagion could be observed in some regions (see Fig. 1, plot of ∆ρ(α)). Because of that it
might be better to restrict Ai,C (for i = 1, 2, 3) to subset of S. We will treat normal copula
as benchmark model and try to restrict S to subset, where normal copula is contagion
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free. Let us point out that such subset might strongly depend on r (where r is correlation
parameter from Gaussian copula). Let Gr be a normal copula with r > 0. Let

Si,Gr = {(α1, β1) : 0 < α1 ≤ β1 < inf
β
Ai,Gr} for (i = 1, 2, 3)

Of course we have then Si,Gr ∩ Ai,Gr = ∅, so the Gaussian copula Gr is contagion free
(of i-th type) in subset Si,Gr . Now let us approximate the value of infβ Ai,Gr for different
r > 0.

Proposition 5.1. For given Gaussian copula Gr with r > 0, to calculate infβ Ai,Gr (for i =
1, 2, 3) we only need to solve equation ρ(Gr,Tβ,1) = ρ(Gr,Mβ,0

) (for i = 1, 2) and ρ(Gr,Tβ,β) =
ρ(Gr,Mβ,β

) (for i = 3) for β ∈ (0, 0.5).

Proof.
Let us fix 1 > r > 0. We will prove proposition for i = 1. For i = 2 the proof is the
same (note that Gaussian copula is symmetric so obtained minimal beta will be the same),
and for i = 3 proof will go in similar way. We know from Theorem 4.1, Theorem 4.3
and Proposition 3.1 that ρ(Cr,Tα,1) is increasing function of α and ρ(Cr,Mβ,0

) is decreasing
function of β. Because of that and the property α ≤ β:

(α, β) ∈ A1,Gr ⇒ (β, β) ∈ A1,Gr

∀h ∈ [0, 0.5− β) : (β, β) ∈ A1,Gr ⇒ (β + h, β + h) ∈ A1,Gr

Because of above observations, to compute infβ Ai,Gr we only need to find minimal β
such that ρ(Gr,Tβ,1) ≥ ρ(Gr,Mβ,0

). From above theorems we know also that function

∆1(β) := ρ(Gr,Tβ,1)− ρ(Gr,Mβ,0
)

is (strictly) increasing. For β → 0+ above inequality is trivially false (as ρ(Π) = 0 ≥
6 arcsin(r/2)

π
= ρ(Gr) is false) and for β → 0.5− is true (as ρ(Gr,T0.5,1) ≥ ρ(Π) = 0). (This

fact follows from Theorem 4.4, Proposition 4.2 and 4.1). Because of that and the fact
that function ∆1 is continuous (as Gaussian copula is absolutely continuous function) we
know that ∆1 will be equal to 0 at exactly one point which will coincide with infβ Ai,Gr .

�

Using Proposition 5.1 we have computed values of infβ Ai,Gr for various r. In Figure 2
we present empirical results for r ∈ (0.05, 0.95). As we can see the values of infβ Ai,Gr are
almost constant for (i = 1, 2, 3). Therefore we can define r-invariant subsets of S:

S1 = S2 = {0 < α ≤ β < 0.21}, (4)

S3 = {0 < α ≤ β < 0.18}. (5)

We will also consider sets of the form

S1a = S2a = {0 < α = β < 0.21},
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Figure 2: Plot of infβ A1,Gr and infβ A3,Gr as functions of r for r ∈ [0.05, 0.95]. (Smoothed
and MC-simulated – 1.000.000 copula sample for each r.)

S3a = {0 < α = β < 0.18}.

For a broad class of families this should be the limiting case. Let us remark that, the
smaller β, the bigger α can be (in S). From empirical point of view, we want to maximize
α when sample is of small size. It is also worth noticing, that we could define measure of
contagion with respect to Si . For any copula C and standard Lebesgue measure µ defined
on S:

γi(C) :=
µ(Ai,C ∩ Si)

µ(Si)
, (6)

γia(C) :=
µa(Ai,C ∩ Sia)

µa(Sia)
(7)

where µa is projection of µ. For example, for t-student copula Cstud (r = 0.7, df = 3):
γ1(Cstud) ≈ 0.10, γ1a(Cstud) ≈ 0.12, γ3(Cstud) ≈ 0.70, γ3a(Cstud) ≈ 0.48.

Let us also say that above subsets define proper tail and central sets on which contagion
test should be applied.

6 Description of models

We will use seven different mGARCH models to model contagion effect. Standard BEKK(1,1)
model, DCC(1,1) (Engle and Shepard), EDCC(1,1), Copula-GARCH(1,1) model (with
time-invariant normal/t-student copula), Copula-GARCH(1,1) (with given dynamics for
the normal copula parameter) and Markov Switching Copula GARCH(1,1) model (with
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Normal and Clayton copulas). For all Copula-GARCH models we will use standard uni-
variate GARCH(1,1) dynamics for margins (with conditional skew t-student distribution).
For simplicity, we will write: BEKK, DCC, EDCC, CG1, CG1s, CG2 and MSC. For gen-
eral description of multivariate GARCH models (BEKK, DCC, EDCC) see [34, 35, 36, 37],
for short introduction to extended DCC (EDCC) see [21, 22]. For copula-based models
(CG1, CG1s) see [38, 39, 40, 41], description of CG2 could be find in [41, 40], for detailed
description of MSC see [11, 42, 9].

In the following we denote by H
1
2 the lower triangular matrix obtained by Cholesky

decomposition of a symmetric positive-definite matrix H.

H = H
1
2 (H

1
2 )′,

where ·′ denotes the transposition. When using copula (or MC simulation) from mGARCH
model, one must be very cautious and pay attention to ergodic properties of the model.
Unfortunately the theory of stationarity for GARCH models is still under development.
Nevertheless for BEKK model there is relatively easy condition to check if the model is
stationery (concerning eigenvalues of a specific matrix). For details and information about
stationarity of mGARCH models see [43]. For interesting theoretical and empirical results
concerning mGARCH models see [44].

6.1 BEKK(1,1) model

The BEKK(1,1) process Xt is defined by the following equations:

Xt = H
1
2
t νt νt iid N2(0, id) (white noise),

Ht = C ′C + A′Xt−1X
′
t−1A+B′Ht−1B

where C,A,B are N ×N and C is upper triangle. Of course then we have E(Xt|Ft−1) = 0
and V ar(Xt|Ft−1) = Ht, where the filtration (Ft) is generated by white noise process ν.

6.2 DCC(1,1) model (Engle)

We define DCC(1,1) model as:

Xt = H
1
2
t · νt (νt: white noise),

Ht = DtRtDt

ĥt = C + A · ε̂t−1 +B · ĥt−1 (8)

where

ĥt =

(
h11,t
h22,t

)
Dt =

( √
h11,t 0

0
√
hNN,t

)
ε̂t =

(
X2

1,t

X2
2,t

)
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C is 2 × 1 vector, A and B are diagonal 2 × 2 matrices with nonnegative coefficients
(univariate GARCH(1,1) for all margins) and Rt is time-varying correlation matrix with:

Rt = (diag Qt)
−1/2Qt(diag Qt)

−1/2, diag Qt =

(
Q11,t 0

0 Q22,t

)
,

where Qt is a sequence of covariance matrices:

Qt = (1− α− β)Q+ αXt−1X
′
t−1 + βQt−1

with α + β < 1, α, β > 0, and Q is covariance matrix of the whole sample.

6.3 EDCC(1,1)

The extended DCC model is a modification of DCC that allows volatility spillovers. In
DCC we have assumed that A and B are vectors. In relates to matrices with only diagonal
entries. In Extended version we model A and B as N ×N matrices.

6.4 Copula-GARCH(1,1) model (time-invariant copula) – CG1

Copula-GARCH model base on two-step estimation procedure that is similar to DCC
estimation. First, we estimate univariate GARCH(1,1) models for the margins (we will use
standardized skewed t-Student distribution as conditional distribution, see [45] for details).
We get for i = 1, 2:

Xi,t = h
1
2
i,tνi,t,

hi,t = Ci + AiX
2
i,t−1 +Bihi,t−1, (9)

where νt are iid,
νi,t has standardized skewed t-Student distribution t(dfi, skewi)
and the dependence between ν1,t and ν2,t is described by fixed copula C.

df and skew are degrees of freedom and skewness parameters (from marginal GARCH
estimation). Now, using conditional variances we get standardized residuals. Using Sklar’s
theorem we could get empirical copula from the residuals (using CML procedure1) and
estimate copula C from given copula family. We will use Gaussian and t-Student copula
families. From estimation process we get r as dependence parameter (and dfC for t-Student
copula). The other possibilities like Clayton or Survival Gumbel families of copulas are
discussed in Summary (Section 8).

1IFM procedure could be used as well but empirical studies showed that CML provides better fit for
empirical data.
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6.5 Copula-GARCH(1,1) model (time-varying copula) – CG2

In previous model we had constant copula function over time. We could easily extend
it to time-varying copula. Following first step we get standardized residuals from the
distribution (with same estimated parameters as in previous model). Now we can define
dynamics on the copula parameter. We will use correlation r matrix as parameter matrix
for the model (as in normal copula parametrization). We will use dynamics described
in [38] that is:

r(t) = L
(
a1 + a2r(t−1) + a3

1

10

t∑
j=(t−10)

[
F−1(u1j)F

−1(u2j)
])

where {(u1t, u2t)}t=Tt=1 is CML copula sample constructed from standardized residuals,
F is standard normal and L(x) = tanh(x

2
) is function designed to keep r in [−1, 1]. As one

can see dynamics of the dependence parameter is similar to ARIMA(1,10). We took Φ−1

as empirical studies showed that it provides good fit for the financial data. We assume
that copula is normal with varying parameter r.

6.6 MSC(1,1) model

Markov-Switching Copula GARCH model (MSC) has also two step estimation procedure,
where the first step is similar to the previous models. We assume that the joint conditional
distribution of εt|Ft−1 ∼ CSt(F1(·), . . . , FN(·)|Ft−1), where St is homogeneous Markov
chain with two states {1, 2}, and Ft, Gt are margins with dynamics described with uni-
variate GARCH(1,1) (we took standardized skewed t-student distribution). Markov chain
is described with transition probabilities:

P =

(
p11 1− p11

1− p22 p22

)
where, for example p11 = P (St = 1|St−1 = 1). Conditional probabilities are calculated

using Hamilton’s filter:

P (St = k|Ft−1) = p1kP (St−1 = 1|Ft−1) + p2kP (St−1 = 2|Ft−1)

P (St = k|Ft) =
ck(ut|St = k,Ft−1)P (St = k|Ft−1)

c1(ut|St = 1,Ft−1)P (St = 1|Ft−1) + c2(ut|St = 2,Ft−1)P (St = 2|Ft−1)

for k = 1, 2. ut =
(
F1(r1,t), . . . , FN(rN,t)

)′
(IFM copula sample constructed from stan-

dardized residuals) and c1, c2 are densities of conditional copula. We will use Normal
and Joe-Clayton (BB7) as conditional copulas. r will be the parameter of Normal copula
and (θ, δ) will be parameters of Joe-Clayton copula. For details and construction of log-
likelihood function see [9].
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7 Empirical study

For empirical analysis we have used data set that consists of FTSE100 and DAX indices.
For daily log-returns, we have chosen period from 26.11.1990 to 21.10.2011 and considered
the days where both markets were operating. There are 5206 observations from this sample.
In Fig. 3 one can see plot for daily returns. Computations were done using R 2.13.2 (64-
bit). We have used libraries fGarch (for marginal GARCH simulation), copula (for copula
function estimation and fitting), mgarchBEKK (for BEKK estimation and simulation),
ccgarch (for DCC and EDCC estimation and simulation) and doSMP (for symmetric
multicore processing to speed up Monte Carlo simulation). For estimated parameters we
have simulated 1000 (standard) Monte Carlo samples (each of size 5206) for each model.
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Figure 3: FTSE100 (left) and DAX (right) daily log returns from 26.11.1990 to 21.10.2011.

7.1 Estimation

We will try to fit copulas from certain families (i.e. normal and t-copula) as well as several
mGARCH models (described in Section 6). For copula estimation we have used CML
procedure (with function fitCopula from copula R library) and obtained r̂ = 0.73 for
normal copula and (r̂ = 0.73, d̂f = 3.48) for t-copula. The results of estimation for all
mGARCH models can be seen in Table 5.

For general fitting information, AIC and BIC (standard and normalized) for all mGARCH
models are presented in Table 6. Let us point out that it tells us nothing about the conta-
gion of the fitted model. In package ccgarch (as well as many others), estimation is based
on optim function which does not (always) guarantee convergence to the global solution
(i.e. set of parameters with maximal likelihood). Because of that the loglikelihood of the
EDCC model is smaller than the loglikelihood of the DCC model, so estimation results
as well as values of AIC and BIC should be treated carefully. Increase in the number of
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Table 5: mGARCH models estimated parameters for FTSE-DAX sample

Model Estimation results

BEKK(1,1) C =

(
−1.137× 10−3 −1.617× 10−3

0× 100 −1.872× 10−3

)
,

A =

(
−2.449× 10−1 1.977× 10−1

−1.051× 10−1 −4.647× 10−1

)
,

B =

(
9.84× 10−1 1.05× 10−1

−5.331× 10−2 8.551× 10−1

)
DCC(1,1) C = (3.611× 10−7, 5.508× 10−6), A = (5.441× 10−2, 8.349× 10−2),

B = (9.372× 10−1, 8.708× 10−1),

Q =

(
1.000 0.701
0.701 1.000

)
, α = 0.022, β = 0.975

EDCC(1,1) C = (1.488× 10−7, 1.804× 10−5), A =

(
5.448× 10−2 1.294× 10−2

4.669× 10−2 6.509× 10−3

)
,

B =

(
9.181× 10−1 4.713× 10−3

1.435× 100 1.410× 10−3

)
,

Q =

(
1.000 0.692
0.692 1.000

)
, α = 0.032, β = 0.965

CG1(1,1) C = (1.032× 10−6, 1.476× 10−6), A = (8.123× 10−2, 8.217× 10−2),
B = (9.128× 10−1, 9.126× 10−1), df = (10, 9.06),
skew = (0.925, 0.911), r = 0.698

CG1s(1,1) C = (1.032× 10−6, 1.476× 10−6), A = (8.123× 10−2, 8.217× 10−2),
B = (9.128× 10−1, 9.126× 10−1), df = (10, 9.06),
skew = (0.925, 0.911), r = 0.707, dfC = 5.522

CG2(1,1) C = (1.032× 10−6, 1.476× 10−6), A = (8.123× 10−2, 8.217× 10−2),
B = (9.128× 10−1, 9.126× 10−1), df = (10, 9.06),
skew = (0.925, 0.911), (a1 = 0.582, a2 = 1, a3 = 0.65)

MSC(1,1) C = (1.032× 10−6, 1.476× 10−6), A = (8.123× 10−2, 8.217× 10−2),
B = (9.128× 10−1, 9.126× 10−1), df = (10, 9.06),

skew = (0.925, 0.911), P =

(
0.993 0.007
0.009 0.991

)
, r = 0.55, θ = 2.54, δ = 2.01

parameters might make a solution worse fitted to data due to loglikelihood maximization
algorithm imperfectness (or convergence speed).

Nevertheless the DCC model was chosen according to both AIC and BIC criteria (for
general fit).
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Table 6: AIC and BIC values for fitted mGARCH models

Model AIC AIC (norm.) BIC BIC (norm.)
BEKK(1,1) -67967.42 -13.0556 -67888.73 -13.0405
DCC(1,1) -71624.29 -13.7581 -71572.46 -13.7480
EDCC(1,1) -70380.57 -13.5191 -70301.88 -13.5040
CG1(1,1) -68169.98 -13.0945 -68097.8400 -13.0806
CG1s(1,1) -68376.29 -13.1341 -68297.60 -13.1190
CG2(1,1) -68453.72 -13.1490 -68368.47 -13.1326
MSC(1,1) -68798.34 -13.2152 -68699.97 -13.1963

7.2 Contagion modelling

In Fig. 4 we can see plots of ρ̂emp(CTα,α), ρ̂emp(CMα,α) and ∆ρ̂emp(α) := ρ̂emp(CTα,α) −
ρ̂emp(CMα,α) for FTSE-DAX sample, α ∈ [0.05, 0.45]. Empirical values of ρ̂emp are presented
in Table 7.
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Figure 4: Plot of ρ̂emp(CTα,α), ρ̂emp(CMα,α) and ∆ρ̂emp(α) as functions of α for real stock-
market data FTSE-DAX, α ∈ [0.05, 0.45]

Before comparing mGARCH models, we will see how general copula fits work for the
data and compare it to BEKK model. Starting with copulas obtained from CML procedure,
for (j = 1, . . . , 1000) we have sampled 5206 observations from estimated copulas and for
every α we computed upper and lower 0.05 quantile of {ρ̂(Cj

Tα,α
)}1000j=1 , {ρ̂(Cj

Mα,α
)}1000j=1 and

{∆ρ̂j(α)}1000j=1 . Results are presented in Fig. 5 and Fig. 6.
As we can clearly see (and what has been many times proven in literature), normal

copula underestimates tail dependence, while being good model for central set conditional
copula. On the other hand, t-copula provides better fit for the tails, but it is still not
very accurate. The resulting benchmark (∆) shows us, that both models underestimates
dependence in specific regions of copula. It tells us, that there is contagion effect in the
sample (stronger than in normal, or t copula model). Because of that the standard test
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Table 7: FTSE-DAX Sample

FTSE-DAX/ α 0.01 0.03 0.05 0.075 0.1 0.15 0.2 0.25
ρ(CTα,1) 0.34 0.55 0.58 0.56 0.61 0.58 0.56 0.55

Sample size: 52 156 260 390 520 780 1041 1301
ρ(CT1,α) 0.3 0.63 0.52 0.54 0.52 0.53 0.57 0.55

Sample size: 52 156 260 390 520 780 1041 1301
ρ(CTα,α) 0.33 0.62 0.58 0.62 0.59 0.52 0.6 0.59

Sample size: 33 92 153 239 316 485 651 849
FTSE-DAX/ α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

ρ(CMβ,0
) 0.62 0.55 0.5 0.43 0.36 0.28 0.22 0.09

Sample size: 4685 4165 3645 3123 2603 2083 1561 1041
ρ(CM0,β

) 0.63 0.55 0.49 0.43 0.34 0.26 0.18 0.11
Sample size: 4685 4165 3645 3123 2603 2083 1561 1041
ρ(CMβ,β

) 0.59 0.5 0.43 0.35 0.25 0.17 0.14 0
Sample size: 4452 3733 3034 2368 1765 1204 726 351

FTSE-DAX α 0.1 0.15 0.17 0.2 0.21 0.25 0.3 0.35
ρ(CTα,1)− ρ(CMα,0) 0.05 0.07 0.1 0.13 0.13 0.19 0.27 0.31
ρ(CT1,α)− ρ(CM0,α) -0.03 0.04 0.1 0.14 0.15 0.21 0.3 0.36
ρ(CTα,α)− ρ(CMα,α) 0.09 0.09 0.16 0.26 0.27 0.34 0.4 0.41
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Figure 5: Plot of 0.05 and 0.95 α quantiles for {ρ̂(Cj
Tα,α

)}1000j=1 , {ρ̂(Cj
Mα,α

)}1000j=1 and

{∆ρ̂j(α)}1000j=1 from MC-simulation of normal copula, r = 0.73

for contagion should be positive. See [7] for details.

Sampling from normal and t-copula we assumed that the observations are independent,
which simplifies sampling procedure, but does not have strong foundations in reality. Now
we will try, to sample 5206 observations from various mGARCH models with estimated
parameters.
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Figure 6: Plot of 0.05 and 0.95 α quantiles for {ρ̂(Cj
Tα,α

)}1000j=1 , {ρ̂(Cj
Mα,α

)}1000j=1 and

{∆ρ̂j(α)}1000j=1 from MC-simulation of t-student copula, r = 0.73, df = 3.48

For BEKK(1,1) model (with normal residuals) and estimated parameters we simulated
sample of size 5206. We repeated this procedure 1000 times and computed α quantiles as
in previous approach. The result can be seen in Fig. 7.
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Figure 7: Plot of 0.05 and 0.95 α quantiles for {ρ̂(Cj
Tα,α

)}1000j=1 , {ρ̂(Cj
Mα,α

)}1000j=1 and

{∆ρ̂j(α)}1000j=1 from MC-simulation of BEKK model (FTSE-FAX estimated parameters)

As one can see BEKK model fits better for the data. For a large 1.000.000 BEKK(1,1)
sample (with estimated parameters) the values of ρ(CTα,α), ρ(CMα,α) and ∆ρ(α) for α ∈
[0.05, 0.45] are presented in Fig. 8. The values of conditional Spearman’s ρ̂ are presented
in Table 8.

Now we will compute some basic MC-statistics for various central and tail sets for
previously estimated mGARCH models. We propose four different statistics for valuation
of model. Statistics are based on Monte Carlo simulation. For each mGARCH model we
simulate sample of size 5206 (with given estimates) and repeat this procedure 1000 times.
For each simulation we compute empirical copula and it’s ∆(ρ̂) for various tail and central
sets. Then we compute the following MC-statistics for given tail set T and central set M
which are based on ∆(ρ) := ρ(CT )− ρ(CM ). For given mGARCH model and 1000 Monte
Carlo simulations:
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Figure 8: Plot of ρ(CTα,α), ρ(CMα,α) and ∆ρ(α) as functions of α for BEKK 1.000.000
sample (FTSE-FAX estimated parameters), α ∈ [0.05, 0.45]

Table 8: Conditional Spearman’s ρ values for estimated BEKK model (1.000.000 sample
size, parameters estimated from FTSE-DAX)

BEKK α 0.01 0.03 0.05 0.075 0.1 0.15 0.2 0.25
ρ(CTα,1) 0.57 0.55 0.54 0.54 0.54 0.54 0.55 0.55

Sample size 9999 29999 49999 74999 99999 149999 199999 249999
ρ(CT1,α) 0.62 0.59 0.58 0.57 0.57 0.57 0.57 0.57

Sample size 9999 29999 49999 74999 99999 149999 199999 249999
ρ(CTα,α) 0.66 0.64 0.62 0.61 0.61 0.59 0.59 0.59

Sample size 6259 18271 30378 45799 61890 95132 130614 168330
BEKK β 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
ρ(CMβ,0

) 0.69 0.63 0.56 0.49 0.42 0.34 0.26 0.17
Sample size 899999 799999 699999 599999 499999 399999 299999 199999
ρ(CM0,β

) 0.69 0.62 0.55 0.48 0.41 0.33 0.25 0.17
Sample size 899999 799999 699999 599999 499999 399999 299999 199999
ρ(CMβ,β

) 0.67 0.58 0.49 0.39 0.29 0.2 0.12 0.05
Sample size 861109 724685 592411 466199 347152 237836 142432 66453
BEKK α 0.1 0.15 0.17 0.2 0.21 0.25 0.3 0.35

ρ(CTα,1)− ρ(CMα,0) -0.09 -0.02 0.01 0.05 0.07 0.13 0.22 0.3
ρ(CT1,α)− ρ(CM0,α) -0.05 0.01 0.04 0.08 0.1 0.16 0.24 0.32
ρ(CTα,α)− ρ(CMα,α) 0.03 0.11 0.14 0.2 0.22 0.29 0.38 0.46

1. µ and σ are mean and standard deviation of the MC-sample (i.e. ∆(ρ̂)1000j=1 ).

2. p1 = PMC [∆(ρ) ≥ 0)]. It refers to probability under which the contagion in observed
in the model (i.e. dependence in the tail is stronger than in the center of copula).
By default it will be 1− ecdf(0), where ecdf is MC-distribution function constructed
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from values of ∆(ρ̂)1000j=1 (obtained from MC-simulations).

3. p2 = PMC [∆(ρ) ≥ ∆(ρ)emp)] where ∆(ρ)emp is value of ∆(ρ) in given real-stock data
sample. It refers to the probability that the contagion effect is stronger in the model,
than in the sample. Also here we use MC-distribution function.

We will also consider some global benchmarks based on contagion measures γi and γia
(for i = 1, 2, 3) defined as (6) and (7). For given mGARCH model and 1000 Monte Carlo
simulations:

4. µ2 and σ2 are mean and standard deviation of the MC-sample (i.e. γi(C)1000j=1 or
γia(C)1000j=1 ).

5. p3 = PMC [γi(C) > γi(Cemp)] = p, where Cemp will be real-stock data empirical
copula and γi(C) will be random variable with MC-distribution of γi(C)1000j=1 from
1000 copulas obtained with Monte Carlo simulations . That will refer to probability
that contagion is more thorough in the model, than in the sample.

6. Similarly p4 = PMC [γia(C) > γia(Cemp)].

The results for various types of contagion (type 1, 2 (asymmetric) and 3 (symmetric)
as in Section 5) are presented in Tables 9, 10 and 11 while overall contagion statistics are
presented in Table 12. We have checked statistics for α,β ∈ {0.1, 0.15, 0.18, 0.21} with
inequality (α ≤ β). Let us point out that for type 3 contagion the last part of the table
could be misleading (see (4) and (5) in Section 5). Apart from values of test statistics,
every table contain empirical value over which the test statistics is based on. (do not
confuse it with value of statistics – it is not comparable).
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Table 9: Statistics for contagion type 1, FTSE-DAX

M = (1, β) β 0.1 0.15 0.18 0.21
T = (0, α) α 0.1 0.1 0.15 0.1 0.15 0.18 0.1 0.15 0.18 0.21

emp ∆ 0.054 0.021 0.074 0.016 0.069 0.110 0.002 0.054 0.096 0.134
BEKK -0.104 -0.097 -0.032 -0.093 -0.028 0.014 -0.089 -0.024 0.018 0.061
DCC -0.222 -0.195 -0.134 -0.182 -0.121 -0.083 -0.170 -0.109 -0.071 -0.033

EDCC -0.086 -0.077 -0.019 -0.071 -0.013 0.021 -0.068 -0.010 0.025 0.060
CG1 µ -0.279 -0.251 -0.192 -0.234 -0.175 -0.139 -0.218 -0.160 -0.123 -0.086
CG1s -0.244 -0.216 -0.159 -0.200 -0.144 -0.109 -0.186 -0.130 -0.095 -0.058
CG2 -0.242 -0.216 -0.155 -0.200 -0.140 -0.103 -0.188 -0.128 -0.091 -0.053
MSC -0.220 -0.189 -0.129 -0.172 -0.112 -0.075 -0.157 -0.097 -0.060 -0.023

BEKK 0.061 0.050 0.051 0.045 0.047 0.047 0.041 0.043 0.043 0.043
DCC 0.068 0.057 0.056 0.052 0.052 0.051 0.049 0.049 0.049 0.048

EDCC 0.109 0.094 0.096 0.088 0.090 0.090 0.082 0.085 0.086 0.085
CG1 σ 0.068 0.057 0.057 0.052 0.053 0.052 0.048 0.050 0.050 0.049
CG1s 0.064 0.055 0.055 0.050 0.051 0.051 0.046 0.047 0.048 0.047
CG2 0.067 0.056 0.056 0.050 0.051 0.051 0.047 0.048 0.048 0.047
MSC 0.085 0.070 0.071 0.064 0.066 0.066 0.058 0.060 0.060 0.060

BEKK 0.047 0.025 0.263 0.020 0.281 0.613 0.013 0.288 0.652 0.923
DCC 0.001 0.002 0.010 0.001 0.008 0.040 0.001 0.009 0.073 0.243

EDCC 0.185 0.183 0.388 0.189 0.404 0.575 0.180 0.421 0.592 0.777
CG1 p1 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.003 0.026
CG1s 0.001 0.000 0.001 0.000 0.002 0.006 0.000 0.000 0.012 0.094
CG2 0.000 0.000 0.001 0.000 0.001 0.013 0.000 0.001 0.019 0.127
MSC 0.000 0.000 0.023 0.000 0.030 0.119 0.000 0.031 0.156 0.373

BEKK 0.009 0.009 0.022 0.006 0.027 0.027 0.011 0.039 0.036 0.044
DCC 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001

EDCC 0.103 0.140 0.158 0.149 0.165 0.152 0.173 0.203 0.184 0.177
CG1 p2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CG1s 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CG2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
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Table 10: Statistics for contagion type 2, FTSE-DAX

M = (β, 1) β 0.1 0.15 0.18 0.21
T = (α, 0) α 0.1 0.1 0.15 0.1 0.15 0.18 0.1 0.15 0.18 0.21

emp ∆ -0.035 -0.023 0.044 0.016 0.083 0.115 0.005 0.072 0.104 0.152
BEKK -0.069 -0.069 -0.002 -0.068 0.000 0.042 -0.066 0.002 0.045 0.088
DCC -0.232 -0.207 -0.146 -0.192 -0.131 -0.094 -0.179 -0.118 -0.080 -0.043

EDCC -0.143 -0.126 -0.070 -0.116 -0.060 -0.026 -0.108 -0.052 -0.017 0.017
CG1 µ -0.280 -0.251 -0.193 -0.235 -0.177 -0.140 -0.220 -0.162 -0.126 -0.089
CG1s -0.249 -0.220 -0.165 -0.206 -0.150 -0.115 -0.191 -0.136 -0.101 -0.064
CG2 -0.247 -0.220 -0.160 -0.206 -0.146 -0.109 -0.192 -0.132 -0.095 -0.058
MSC -0.225 -0.194 -0.135 -0.177 -0.117 -0.080 -0.161 -0.101 -0.064 -0.027

BEKK 0.064 0.051 0.052 0.045 0.046 0.046 0.041 0.042 0.043 0.043
DCC 0.054 0.045 0.044 0.043 0.042 0.040 0.040 0.040 0.039 0.037

EDCC 0.102 0.091 0.091 0.084 0.085 0.085 0.078 0.079 0.079 0.079
CG1 σ 0.067 0.058 0.057 0.054 0.055 0.054 0.049 0.051 0.051 0.050
CG1s 0.068 0.057 0.057 0.053 0.054 0.054 0.048 0.050 0.050 0.050
CG2 0.071 0.061 0.061 0.056 0.057 0.056 0.051 0.052 0.053 0.052
MSC 0.086 0.070 0.071 0.063 0.065 0.065 0.058 0.060 0.060 0.060

BEKK 0.128 0.092 0.480 0.066 0.492 0.831 0.053 0.528 0.861 0.979
DCC 0.000 0.000 0.000 0.000 0.001 0.010 0.000 0.002 0.023 0.117

EDCC 0.082 0.078 0.207 0.082 0.221 0.337 0.081 0.229 0.361 0.557
CG1 p1 0.000 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.003 0.023
CG1s 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.011 0.076
CG2 0.000 0.000 0.002 0.000 0.002 0.020 0.001 0.004 0.026 0.115
MSC 0.001 0.000 0.019 0.001 0.022 0.087 0.000 0.032 0.132 0.346

BEKK 0.289 0.167 0.177 0.033 0.033 0.066 0.039 0.045 0.080 0.069
DCC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EDCC 0.142 0.127 0.098 0.066 0.056 0.059 0.072 0.067 0.071 0.058
CG1 p2 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CG1s 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CG2 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
MSC 0.005 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 11: Statistics for contagion type 3, FTSE-DAX

M = (β, β) β 0.1 0.15 0.18 0.21
T = (α, α) α 0.1 0.1 0.15 0.1 0.15 0.18 0.1 0.15 0.18 0.21

emp ∆ 0.090 0.024 0.088 0.082 0.145 0.196 0.098 0.162 0.212 0.273
BEKK -0.012 -0.011 0.081 -0.009 0.083 0.141 -0.009 0.083 0.141 0.199
DCC -0.205 -0.175 -0.087 -0.162 -0.073 -0.021 -0.149 -0.060 -0.008 0.040

EDCC -0.060 -0.028 0.044 -0.013 0.059 0.103 -0.002 0.070 0.113 0.157
CG1 µ -0.263 -0.228 -0.145 -0.212 -0.128 -0.078 -0.197 -0.113 -0.063 -0.014
CG1s -0.193 -0.155 -0.082 -0.140 -0.067 -0.021 -0.127 -0.054 -0.008 0.038
CG2 -0.220 -0.193 -0.106 -0.178 -0.091 -0.039 -0.164 -0.077 -0.025 0.024
MSC -0.119 -0.096 -0.022 -0.083 -0.009 0.035 -0.073 0.001 0.045 0.089

BEKK 0.077 0.064 0.065 0.056 0.057 0.058 0.050 0.051 0.052 0.053
DCC 0.082 0.064 0.062 0.056 0.054 0.054 0.051 0.049 0.048 0.048

EDCC 0.120 0.107 0.105 0.103 0.100 0.098 0.097 0.094 0.092 0.090
CG1 σ 0.097 0.076 0.077 0.068 0.069 0.070 0.061 0.061 0.062 0.064
CG1s 0.092 0.073 0.074 0.063 0.065 0.065 0.058 0.058 0.059 0.060
CG2 0.094 0.074 0.076 0.067 0.069 0.070 0.062 0.063 0.064 0.065
MSC 0.098 0.078 0.081 0.070 0.072 0.074 0.063 0.066 0.067 0.069

BEKK 0.422 0.404 0.896 0.414 0.926 0.995 0.404 0.948 0.999 1.000
DCC 0.006 0.004 0.085 0.003 0.085 0.350 0.001 0.103 0.430 0.814

EDCC 0.281 0.342 0.651 0.397 0.712 0.861 0.445 0.766 0.912 0.981
CG1 p1 0.003 0.001 0.032 0.000 0.031 0.123 0.001 0.026 0.150 0.423
CG1s 0.017 0.015 0.134 0.016 0.152 0.369 0.011 0.168 0.455 0.755
CG2 0.013 0.010 0.072 0.009 0.089 0.269 0.005 0.089 0.344 0.656
MSC 0.103 0.103 0.424 0.109 0.460 0.697 0.121 0.520 0.759 0.897

BEKK 0.091 0.268 0.450 0.052 0.140 0.169 0.023 0.068 0.098 0.086
DCC 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EDCC 0.111 0.284 0.306 0.158 0.175 0.158 0.135 0.146 0.133 0.098
CG1 p2 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CG1s 0.000 0.008 0.011 0.000 0.001 0.000 0.000 0.000 0.000 0.000
CG2 0.003 0.004 0.008 0.000 0.001 0.000 0.000 0.000 0.000 0.000
MSC 0.012 0.060 0.087 0.008 0.013 0.009 0.002 0.007 0.005 0.005
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Table 12: Statistics of global contagion type 1,2 and 3, FTSE-DAX

Measure γ1 γ2 γ3 γ1a γ2a γ3a
emp value 0.772 0.755 0.935 0.913 0.790 0.975
BEKK 0.541 0.594 0.749 0.706 0.758 0.861
DCC 0.394 0.376 0.518 0.553 0.537 0.653

EDCC 0.582 0.496 0.770 0.718 0.643 0.801
CG1 µ2 0.316 0.310 0.441 0.482 0.478 0.587
CG1s 0.351 0.344 0.535 0.517 0.509 0.654
CG2 0.360 0.355 0.493 0.525 0.520 0.631
MSC 0.427 0.419 0.624 0.574 0.566 0.730

BEKK 0.084 0.089 0.090 0.089 0.095 0.087
DCC 0.082 0.064 0.065 0.072 0.053 0.067

EDCC 0.189 0.167 0.154 0.155 0.142 0.111
CG1 σ2 0.069 0.067 0.076 0.063 0.062 0.080
CG1s 0.070 0.071 0.090 0.064 0.063 0.084
CG2 0.072 0.076 0.083 0.065 0.069 0.083
MSC 0.096 0.095 0.116 0.084 0.084 0.104

BEKK 0.009 0.046 0.030
DCC 0.001 0.000 0.000

EDCC 0.172 0.083 0.204
CG1 p3 0.000 0.000 0.000 –
CG1s 0.000 0.000 0.000
CG2 0.000 0.001 0.000
MSC 0.000 0.000 0.007

BEKK 0.035 0.283 0.132
DCC 0.001 0.000 0.000

EDCC 0.139 0.146 0.065
CG1 p4 – 0.000 0.000 0.000
CG1s 0.000 0.000 0.002
CG2 0.000 0.001 0.002
MSC 0.000 0.006 0.017
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8 Summary

From test statistics and previous observations the following general conclusions could be
derived:

• In all mGARCH models (within the models based on normal or Student distribution
for general data fit), the contagion effect is too small (in comparison with the sample).

• From given mGARCH models, BEKK provides the best fit for contagion effect and is
vitally better than other mGARCH models. EDCC and MSC models could be taken
into consideration as well.

It is worth noticing that better performance of BEKK and EDCC might be the result
of the so-called volatility spillover effect. Also, models other than BEKK in some way
separate the estimation procedure into two steps. In the beginning the marginal densities
are derived and then the multivariate dependence structure is taken into consideration.
It could lead to serious loss of information (when dynamic model is considered). Most of
copula-based GARCH models are strongly connected with that idea (two step estimation)
and because of that they are not very good for modelling contagion.

According to the knowledge of the authors there are no models which could efficiently
join the dynamic behaviour of the margins, with dynamics of the copula (simultaneously
guaranteeing any substantial benefit from using copula function). Also, the theory of dy-
namic copula is still not very-well developed.

Perhaps, the most promising class of models (for copulas) are MSC models which pro-
vide Markov switching in the margins and assume dynamics in every class (i.e. state) of
copula. Still, the estimation procedure must not be separated (as switches in the copula is
too strongly associated with switches in the tails) so further development of that models in
needed. Also extreme value copulas might play important role as (crisis-time) conditional
copulas.

We want to underline the fact, that our study was held within the class of models de-
signed for general fit for the data. When we consider specific class for copulas, which are
designed to catch contagion effect – like Clayton copula – then the results may vary. For
example, in Table 13 we present previously considered statistics for contagion type 1 for
CG1sg (Survival-Gumbel-GARCH(1,1)) and CG1c (Clayton-GARCH(1,1)) models (MLE
fitted parameters as in previous models). Let us point out that such copulas usually provide
good fit for contagion effect but they might lack good overall fit for the data. In fact, for
mGARCH models (CG1), ML (i.e. maximum log-likelihood of copula) for model based on
normal copula is equal to 1741, t-Student copula – 1845, Clayton – 1557, Survival-Gumbel
– 1805. As we can see CG1c lacks good overall fit. On the other hand CG1sg provides
general fit but contagion-fit is worse than in BEKK model. It is also worth mentioning
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that fit for the upper tail (associated with boom period), is very poor both in Clayton and
Survival-Gumbel.

In future’s work authors will show how mGARCH models behave (in copula framework)
when temporal copula contagion is considered (i.e. copula is conditioned over sample
volatility value – time-space is divided into sets with high and low volatility).

Table 13: Statistics for contagion-fit copulas, contagion type 1, FTSE-DAX

M = (1, β) β 0.1 0.15 0.18 0.21
T = (0, α) α 0.1 0.1 0.15 0.1 0.15 0.18 0.1 0.15 0.18 0.21

emp ∆ 0.054 0.021 0.074 0.016 0.069 0.110 0.002 0.054 0.096 0.134
BEKK -0.104 -0.097 -0.032 -0.093 -0.028 0.014 -0.089 -0.024 0.018 0.061
CG1c µ -0.096 -0.057 -0.004 -0.037 0.017 0.050 -0.020 0.034 0.067 0.100
CG1sg -0.165 -0.129 -0.073 -0.112 -0.055 -0.019 -0.096 -0.040 -0.004 0.033
BEKK 0.061 0.050 0.051 0.045 0.047 0.047 0.041 0.043 0.043 0.043
CG1c σ 0.078 0.063 0.063 0.057 0.057 0.057 0.051 0.052 0.052 0.052
CG1sg 0.073 0.058 0.059 0.053 0.054 0.054 0.048 0.049 0.050 0.050
BEKK 0.047 0.025 0.263 0.020 0.281 0.613 0.013 0.288 0.652 0.923
CG1c p1 0.089 0.181 0.503 0.259 0.631 0.820 0.352 0.750 0.911 0.966
CG1sg 0.003 0.004 0.089 0.005 0.148 0.391 0.010 0.213 0.495 0.772
BEKK 0.009 0.009 0.022 0.006 0.027 0.027 0.011 0.039 0.036 0.044
CG1c p2 0.018 0.099 0.098 0.181 0.185 0.142 0.342 0.354 0.290 0.252
CG1sg 0.000 0.000 0.000 0.000 0.001 0.000 0.008 0.019 0.014 0.009

9 Proofs

Proof of Proposition 4.1.
Let (U, V ) be a pair of random variables with distribution function C. Consider the set
Mβ,β = [β, 1− β] × [β, 1− β]. Set β = 1

2
− t. Let FMβ,β

be the conditional distribution
function of [(U, V ) |Mβ,β]. For every (x, y) ∈ [−1, 1]2 we have

FMβ,β
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1

2
+ tx,

1

2
+ ty

)
=

VC([1
2
− t, 1

2
+ tx]× [1

2
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2
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2
− t, 1

2
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2
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.

For t→ 0, we obtain that the above expression tends to∫ y
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∫ x
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This fact can be seen by using the Dominated Convergence Theorem and the continuity
of c at the point

(
1
2
, 1
2

)
,

c

(
1

2
+ tu,

1

2
+ tv

)
t→0−→ c

(
1

2
,
1

2

)
,

for all (u, v) ∈ [−1, 1]2. Since the conditional distribution function FMβ,β
tends to the

product of univariate distribution functions (after a linear transformation of its arguments
as in (10)), the limiting copula of CMβ,β

is Π.
�

Proof of Proposition 4.2.
As in the previous proof, let (U, V ) be a pair of random variables with distribution function
C. Consider the set Mβ,0 = [β, 1− β]× [0, 1]. Set β = 1

2
− t. Let FMβ,0

be the conditional
distribution function of [(U, V ) |Mβ,0]. For every (x, y) ∈ [−1, 1]× [0, 1], we have

FMβ,0

(
1

2
+ tx, y

)
=

VC([1
2
− t, 1

2
+ tx]× [0, y])

2t
(11)

=
1

2
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0

∫ x

−1
c

(
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2
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dudv.

As t→ 0, the above expression tends to
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1

2
, v

)
dudv =

x+ 1

2

∫ y

0

c

(
1

2
, v

)
dv,

for all (u, v) ∈ [−1, 1]× [0, 1]. This fact can be seen by using the Dominated Convergence
Theorem and the continuity of c at all points of the set

{
1
2

}
× [0, 1]. Since the conditional

distribution function FMβ,0
tends to the product of univariate distribution functions (after

a linear transformation of its first argument as in (11)), then the limiting copula of CMβ,0

is Π. �

Proof of Theorem 4.1.

We recall that

CTα,1(x, y) =
C(αx,Φ−1α (y))

α
,

where

Φα(y) =
C(α, y)

α
.

For fixed y and α the function

H(x) =
∂

∂α
Gr,Tα,1(x, y)
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is vanishing for x = 0 and x = 1. Since Gaussian copulas are analytic on the open square
(0, 1)2, we get

H ′(x) =
∂

∂x

∂

∂α
Gr,Tα,1(x, y) =

∂

∂α

∂

∂x
Gr,Tα,1(x, y) =

∂

∂α
∂1Gr(αx,Φ

−1
α (y))

=
∂

∂α
F

(
F−1(Φ−1α (y)) + rF−1(αx)√

1− r2

)
=

1√
1− r2

f

(
F−1(Φ−1α (y))− rF−1(αx)√

1− r2

)(
∂

∂α
F−1(Φ−1α (y)))− r x

f(F−1(αx))

)
,

where f is a density of F .
The density f is positive everywhere and ∂

∂α
F−1(Φ−1α (y))) is not depending on x. We

will show that x
f(F−1(αx))

is increasing in x.

Let x = F (q)
α

. We have
x

f(F−1(αx))
=

F (q)

αf(q)
.

∂

∂q

F (q)

f(q)
= 1− F (q)f ′(q)

f(q)2
= 1 +

qF (q)

f(q)
.

Obviously for q ≥ 0 the derivative is positive. For q < 0 positivity follows from the
standard estimate

F (q) <
f(q)

−q
.

Since F (q)
f(q)

is increasing in q, x
f(F−1(αx))

is increasing in x. Therefore the derivative H ′(x)

is vanishing only in one point, at which it changes sign from + to -. Hence H(x) is non-
negative.

�

Proof of Theorem 4.2.
First we observe that the product of the standard Gaussian distribution function and its
density F (q)/f(q) admits an asymptotic expansion

−q−1 + q−3 − 3q−5 + · · ·+ (−1)k+1 (2k)!

2kk!
q−2k−1 + . . .

for q → −∞. Indeed:

Lemma 9.1. For every n > 0

lim
x→0+

x−n

F (x−1)

f(x−1)
−

∑
0≤k≤n−1

2

(−1)k+1 (2k)!

2kk!
x2k+1

 = 0
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Proof.
We apply the l’Hôspital’s rule and the equality

f ′(x) = −xf(x).

Let m =
[
n
2

]
. We get
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−
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�

Basing on the above lemma we get two more estimates.

Lemma 9.2. For x > 0 and q → −∞

F
(
q − lnx

q

)
xF (q)

= 1 +O(q−2).

Proof.

F
(
q − lnx

q

)
xF (q)
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�

Lemma 9.3. For x, v ∈ R, x > 0 and q → −∞
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Proof.
We apply the l’Hôspital’s rule and the equalities

∂1Gr(x, y) = F

(
F−1(y)− rF−1(x)√
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)
,
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.
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The above limit exists and is finite.
�

Now we are in position to prove the theorem. Besides the above lemmas we will use
the fact that copulas are Lipschitz functions and for q → −∞ we get

Gr(x+O(q−2), y +O(q−2)) = Gr(x, y) +O(q−2).
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We put q = F−1(α).
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√
1− r2v)

)
F (q)

+O(q−2)

=
Gr

(
F
(
q − lnx

q

)
− xF (q) +O(q−2), F (r(q + q−1) +

√
1− r2v)

)
F (q)

+O(q−2)

=
Gr

(
F
(
q − lnx

q

)
, F (r(q + q−1) +

√
1− r2v)

)
F (q)

+O(q−2) =

= xF

(
v +

r lnx√
1− r2

q−1
)

+O(q−2)

= xF (v) + xf(v)
r lnx√
1− r2

q−1 +O(q−2).

Hence

Gr,Tα,1(x, y) = xy + xf(F−1(y))
r lnx√
1− r2

q−1 +O(q−2).

�

Proof of Theorem 4.3.
We recall that

CMβ,0
(x, y) =

C
(
(1− 2β)x+ β,Φ−1β (y)

)
− C

(
β,Φ−1β (y)

)
1− 2β

,

where

Φβ(v) =
C(1− β, v)− C(β, v)

1− 2β
.

For fixed y and α the function

H(x) =
∂

∂β
CMβ,0

(x, y)

is vanishing for x = 0 and x = 1. Since Gaussians copulas are analytic on the open square
(0, 1)2, we get

H ′(x) =
∂

∂x

∂

∂β
Gr,Mβ,0

(x, y)
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=
∂

∂β

∂

∂x
Gr,Mβ,0

(x, y) =
∂

∂β
∂1Gr((1− 2β)x+ β,Φ−1β (y))

=
∂

∂β
F

(
F−1(Φ−1β (y)) + rF−1((1− 2β)x+ β)

√
1− r2

)

= f

(
F−1(Φ−1β (y))− rF−1((1− 2β)x+ β)

√
1− r2

)(
∂

∂β
F−1(Φ−1β (y)))− r 1− 2x

f(F−1((1− 2β)x+ β))

)
.

The density f is positive everywhere and ∂
∂β
F−1(Φ−1β (y))) is not depending on x. We

will show that 1−2x
f(F−1((1−2β)x+β)) is increasing in x.

Let q = F−1((1− 2β)x+ β). We have

1− 2x

f(F−1((1− 2β)x+ β))
=

1− 2F (q)

(1− 2β)f(q)
.

∂

∂q

1− 2F (q)

f(q)
= −2− (1− 2F (q))f ′(q)

f(q)2
= −2 +

q(1− 2F (q))

f(q)
.

Obviously for every q the derivative is negative. Since 1−2F (q)
f(q)

is decreasing in q,

1− 2x

f(F−1((1− 2β)x+ β))

is decreasing in x. Therefore the derivative H ′(x) is vanishing only in one point, at which
it changes sign from - to +. Hence H(x) is nonpositive.

�

Proof of Theorem 4.4.
Basing on the fact that the Gaussian distribution function is an analytic function on (0, 1)2

we apply the Taylor expansion. We recall that

Gr,Mβ,0
(x, y) =

Gr

(
(1− 2β)x+ β,Φ−1β (y)

)
−Gr

(
β,Φ−1β (y)

)
1− 2β

,

where

Φβ(v) =
Gr(1− β, v)−Gr(β, v)

1− 2β
.

Since Φ0(v) = v, we get

Φβ(v)−v = [2(Gr(1, v)−Gr(0, v))−∂1Gr(1, v)−∂1Gr(0, v)]β+O(β2) = (2v−1)β+O(β2)

and
Φ−1β (y)− y = (1− 2y)β +O(β2).
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Therefore

Gr,Mβ,0
(x, y) = (Gr ((x+ (1− 2x)β, y + (1− 2y)β)−Gr (β, y + (1− 2y)β)) (1+2β)+O(β2)

= Gr(x, y) + (2Gr(x, y) + ∂1Gr(x, y)(1− 2x) + ∂2Gr(x, y)(1− 2y)− ∂1Gr(0, y)] β+O(β2).

Note that for y > 0 and r > 0

∂1Gr(0, y) = F

(
F−1(y)− rF−1(0)√

1− r2

)
= F (+∞) = 1

�
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