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Abstract
The main result of this paper is an annulus formula for the relative extremal function in the context

of Stein spaces (Theorem 1.1). It has an application in the theory of extensions of holomorphic

functions defined on generalized crosses in products of Stein spaces (Theorem 4.6).

1. Introduction

For an open subset D of a complex space X and any subset A ⊂ D denote by
h?A,D the relative extremal function of A with respect to D, i.e. the standard upper
semicontinuous regularization of the function

hA,D := sup{u : u ∈ PSH(D), u ≤ 1, u|A ≤ 0},
where PSH(D) stands for the family of all plurisubharmonic functions on D.

The relative extremal function is a very important object in complex analysis. If
one has either an explicit formula for the relative extremal function or a geometric
description of its sublevel sets, then it is possible to find estimates for bounded
holomorphic functions on D satisfying some growth estimate on A - to recall, for
example, the two constants theorem ([12], Proposition 3.2.4).

For a number r ∈ (0, 1] define the sublevel sets of the relative extremal function

∆(r) := {z ∈ D : h?A,D(z) < r},

∆[r] := {z ∈ D : h?A,D(z) ≤ r}.
An annulus with respect to the pair (A,D) is defined as a set of the form ∆(s)\∆[r]
for 0 < r < s ≤ 1. This justifies the name “annulus formula”.

In [11] Jarnicki and Pflug proved a Hartogs type extension theorem for (N, k)-
crosses lying in the product of Riemann domains of holomorphy over Cn, which is
a generalization of the classical cross theorem (see, for example [2]). The key role
in their proof is played an annulus formula for the relative extremal function. The
aim of the present paper is to extend that formula to the situation, where instead
of the Riemann domains of holomorphy over Cn we consider Stein spaces. Namely,
we shall prove the following

Theorem 1.1. Let D ⊂⊂ X, where for the couple (D,X) at least one of the
following two conditions is satisfied:

(1) D is a union of an increasing sequence of irreducible, locally irreducible,
weakly parabolic Stein spaces and X is a Stein space,

(2) D is a union of an increasing sequence of Stein manifolds and X is a
Josefson manifold.
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Let A ⊂ D be nonpluripolar. Then for 0 < r < s ≤ 1 we have

h?∆(r),∆(s) = max
{

0,
h?A,D − r
s− r

}
on ∆(s).

Note that the class of Josefson manifolds (i.e. those complex manifolds, for which
any locally pluripolar set is globally pluripolar) is essentialy wider than the class
of Stein manifolds (see [3], Theorem 5.3).

It is also well known that the limit of an increasing sequence of Stein mani-
folds need not to be Stein (see, for example, [7]). It is an open problem whether
our result holds true for arbitrary complex manifolds or spaces.

The proof of Theorem 1.1 is somewhat similar to the one given in [11]. However,
in some places (especially when the assumption (1) is under consideration; Steps
4 and 6) it is essentially different, since the argument must be much more subtle:
the required approximation of a set A is here far away from being as natural as in
the case of Riemann domains over Cn.

Our main result will also allow us (see Section 4) to prove the formula for the
relatively extremal function of the envelope of (N, k − 1)-cross with respect to the
envelope of (N, k)-cross (Theorem 4.3; cf. [11]). Finally we use our main result
to give a new Hartogs type extension theorem for the generalized (N, k)-crosses
(introduced in [14]) in the context of Stein manifolds. In the author’s intention the
present paper is a step towards the extenstion of separately holomorphic functions
on the generalized (N, k)-crosses in the context of arbitrary complex manifolds, or
even complex spaces.

The paper was written during the author’s stay at the Carl von Ossietzky Uni-
versität Oldenburg. The author would like to express his gratitude to Professor
Peter Pflug for his constant help and inspiring discussions.

2. Prerequisites

This section contains some definitions and results which will be needed in the sequel.
We assume that any complex space X considered here is reduced, has a countable

basis of topology and is of pure dimension. If X is a complex space, then any x ∈ X
possesses an open neighborhood U and a biholomorphic mapping ϕ from U to some
subvariety B of a domain V ⊂ Cn. The 4-tuple (U,ϕ,B, V ) will be called a chart
of X. Also, we will use the notation RegX for the set of all regular points of X
and SingX for the set of all singular points of X (see [15], Chapter V). In the
present paper PLP(X) stands for the family of all (locally) pluripolar subsets of
X and O(X) is the space of all holomorphic functions on X. Finally, we assume
throughout the paper that any appearing complex manifold is countable at infinity.

Definition 2.1. Let X be a complex space. A function u : X → [−∞,∞),
u 6≡ −∞ on irreducible componnents of X, is called plurisubharmonic (written
u ∈ PSH(X)) if for any x ∈ X there are a chart (U,ϕ,B, V ) with x ∈ U and a
function ψ ∈ PSH(V ) with ψ ◦ ϕ = u|U .

Definition 2.2 ([9], Chapter VII, Section A). Let X be a complex space and
let K ⊂ X be compact. The holomorphically convex hull of K in X is defined as

K̂X := {x ∈ X : |f(x)| ≤ ‖f‖K , f ∈ O(X)}.

We say that K is holomorphically convex, if K = K̂X . A complex space X is called
holomorphically convex, if for any compact set K ⊂ X, the set K̂X is also compact.

Theorem 2.3 ([16]). Let X be a Stein space (see [9], Chapter VII, Section A,
Definition 2). Then there exists a real analytic, strongly plurisubharmonic exhaus-
tion function on X.
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Note that the real analyticity of a function on a complex space X is defined in a
similar way like the plurisubharmonicity. A function f on X is real analytic, if for
any x ∈ X there are a chart (U,ϕ,B, V ) with x ∈ U and a real analytic function g
on V with g ◦ ϕ = f |U (see [16]).

For a function ψ as in Theorem 2.3 and for any real number c denote by Ωc(ψ)
the sublevel set {x ∈ X : ψ(x) < c}.

Definition 2.4 ([2]). We say that a set A ⊂ X is pluriregular at a point a ∈ A
if h?A∩U,U (a) = 0 for any open neighborhood U of a. Define

A? := {a ∈ A : A is pluriregular at a}.
We say that A is locally pluriregular if A 6= ∅ and A is pluriregular at each of its
points, i.e. ∅ 6= A ⊂ A?.

Lemma 2.5 (cf. [12], Propostion 3.2.27, Lemma 6.1.1). Let X be a complex space,
A ⊂ X locally pluriregular, and ε ∈ (0, 1). Put

Xε := {z ∈ X : h?A,X(z) < 1− ε}.
Then for any connected component D of Xε we have

(1) A ∩D 6= ∅.
(2) h?A∩D,D(z) =

h?A,X(z)

1−ε , z ∈ D.

Proof. The proof goes along the same lines as the proof of Proposition 3.2.27
from [12]. We only need to observe that by virtue of Theorem 5.3.1 from [8],
Proposition 2.3.6 from [12] is also true in our context.

Proposition 2.6 (cf. [12], Proposition 3.2.23). Let Xk ↗ X ⊂⊂ Y, where X is
a complex space and Y is a complex space for which Josefson’s theorem is valid, let
Ak ⊂ Xk, Ak ↗ A. Then h?Ak,Xk ↘ h?A,X .

Proof. The proof is the same as the one of Proposition 3.2.23 in [12]; only, we
use Lemma 2.2 from [1] instead of Corollary 3.2.12.

Proposition 2.7 (cf. [12], Proposition 3.2.15). Let Y be an irreducible Stein
space. Let X = Ωc(ψ) with some c ∈ R and ψ as in Theorem 2.3 for Y, and let
A ⊂ X. Then for any ε ∈ (0, 1) we have

h?A,X − ε
1− ε

≤ h?∆(ε),X ≤ h
?
A,X .

Proof. The proof is the same as the proof of Proposition 3.2.15 from [12]. We
only need to use Lemma 2.6 and Theorem 2.1 from [1] instead of Proposition 3.2.2
and Proposition 3.2.11, respectively.

Proposition 2.8 (cf. [13], Proposition 4.5.2). Let Y be an irreducible Stein
space. Let X = Ωc(ψ) with some c ∈ R and ψ as in Theorem 2.3 for Y, and let A ⊂
X be relatively compact. Then, for any point x0 ∈ ∂X we have lim

X3x→x0

hA,X(x) = 1.

Proof. The proof is as the one given in [13], since it depends only on the
existence of an exhaustion function for X.

Proposition 2.9 (cf. [12], Proposition 3.2.24). Let X be a Stein space and let
(Kj)j∈N be a decreasing sequence of compact subsets of X with

⋂
j∈N

Kj = K. Then

hKj ,X ↗ hK,X .

Proof. The proof may be rewritten verbatim from [12].
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The complex Monge-Ampère operator (ddcu)n for a locally bounded function
u ∈ PSH(X) is defined in a standard way on RegX ([4]) and it is extended “by
zero” through SingX (for the details and the further theory see [3]).
Note that (see [2]) if D is hyperconvex (i.e. there exists a plurisubharmonic negative
function η such that for any c < 0 the set {z ∈ D : η(z) < c} is relatively compact
in D) and A is compact, then (ddch?A,D)n = 0 on D \A.

Theorem 2.10 (cf. [12], Theorem 3.2.32, [13], Corollary 3.7.4). Let Ω ⊂⊂ D ⊂⊂
X, where X is a Stein space, D = Ωc(ψ) with some c ∈ R and ψ as in Theorem
2.3 for X, and Ω is an open set. Let u, v ∈ PSH(Ω) ∩L∞(Ω) such that (ddcv)n ≥
(ddcu)n on Ω and

lim inf
Ω3z→z0

(u(z)− v(z)) ≥ 0, z0 ∈ ∂Ω.

Then u ≥ v on Ω.

Proof. Observe that η := ψ−c < 0 is a real analytic strongly plurisubharmonic
exhaustion function for D. Then there is some C < 0 satisfying Ω ⊂ {η < C}. If
now {u < v} 6= ∅, then also S := {u < v + εη} is nonempty for some ε > 0.
Moreover, the set S∩RegD is of positive Lebesgue measure. Also, {u ≤ v+εη} has
to be relatively compact in Ω. Hence we get∫

S

(ddcu)n ≥
∫
S

(ddc(v + εη))n ≥
∫
S

(ddcv)n + εn
∫
S

(ddcη)n >

∫
S

(ddcv)n,

a contradiction (note that the first inequality above is the consequence of Theorem
4.3 from [3]).

Theorem 2.11 (cf. [12], Corollary 3.2.33). Let X be a Stein space, D = Ωc(ψ)
with some c ∈ R and ψ as in Theorem 2.3 for X, K ⊂⊂ D compact, and let U ⊂
D\K be open. Assume that h?K,D is continuous and let u ∈ PSH(U)∩L∞(U), u ≤ 1
and such that

lim inf
U3z→z0

(h?K,D(z)− u(z)) ≥ 0, z0 ∈ ∂U ∩D.

Then u ≤ h?K,D in U.

Proof. We know that (ddch?K,D)n = 0 on D \K. In particular, (ddch?K,D)n ≤
(ddcu)n in U. Moreover, lim

z→z0
h?K,D = 1, z0 ∈ ∂D. Using Theorem 2.10 we get the

conclusion.

Definition 2.12 (see [20],[21]). Let X be an irreducible Stein space. Then
X is called weakly parabolic if there exists a plurisubharmonic continuous exhaus-
tion function g : X → [0,∞) such that log g is plurisubharmonic and satisfies
(ddc log g)n = 0 on X \ g−1(0).

Theorem 2.13 (see [22], Theorème 3.16). Let X be an irreducible, locally irre-
ducible weakly parabolic Stein space with some potential g, let K ⊂ X be compact
and let U ⊂ X be an open neighborhood of K̂X . Then there exists a compact,
holomorphically convex and locally L-regular (see [22], Definition 3.13) set E with

K̂X ⊂ E ⊂ U.

3. Proof of the main result

First (Steps 1-4) we show that if we know the conclusion holds true for compact
sets A (and holomorphically convex, while we consider assumption (1)), then we
are able to prove the theorem in its full generality. In Steps 5 and 6 we show that
theorem is true for compact sets A. In this purpose we use the approximation of A
from above by compacta (holomorphically convex, when we work with assumption
(1)) with continuous relative extremal functions. The argument however must be
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more delicate than the one given in [11], where such approximation do not require
the holomorphic convexity, and additionally, it is given just by the ε-envelopes of a
set A.

Using Proposition 2.6 we may reduce the proof to the situation where our as-
sumptions are as follows:

(1) D is an irreducible, locally irreducible, weakly parabolic Stein space and X
is a Stein space,

(2) D is a Stein manifold and X is a Josefson manifold.

Proof of Theorem 1.1. Fix 0 < r < s ≤ 1 and put

L := h?∆(r),∆(s), R := max
{

0,
h?A,D − r
s− r

}
.

Observe that L ≥ R. Thus we only need to prove the opposite inequality.
Step 1. We may assume that s = 1.

The proof of Step 1 is the same for both assumptions, (1) and (2). Take 0 < r <
s < 1. Then A ∩ S is nonpluripolar for any connected component S of ∆(s), and
there is h?A,∆(s) = (1/s)h?A,D on ∆(s) (this is because of Lemma 2.5 and the fact

that for D as in the assumptions, thanks to Josefson’s theorem, we have that for
any P ∈ PLP(D) there exists a u ∈ PSH(D), u ≤ 0 and nonconstant, such that
P ⊂ {u = −∞}, from which follows that h?A∪P,D = h?A,D for any A ⊂ D and

pluripolar set P (see [1], Theorem 2.1). Finally, A \ A? is pluripolar - see Lemma
2.6 from [1]). As a consequence, we get L = h∆(r),∆(s) = h{h?

A,∆(s)
< r
s },∆(s), R =

max{0, h
?
A,∆(s)− rs

1− rs
}. Thus, the problem for the data (D,A, r, s) is done if only it is

done for the data (S,A ∩ S, rs , 1), where S is as above.
Step 2. Approximation. Let Aν ↗ A,Dν ↗ D, where Aν ⊂ Dν is nonpluripolar

for each ν ∈ N. Then, if the conclusion holds true for the data (Dν , Aν , r, 1), ν ∈ N,
then it holds true for (D,A, r, 1), as well.
Indeed, h?Aν ,Dν ↘ h?A,D (by virtue of Proposition 2.6). Hence {h?Aν ,Dν < r} ↗ ∆(r)
and h?{h?Aν,Dν<r},D

↘ h?∆(r),D.

Using Step 1 and Step 2, from now on we assume that A ⊂⊂ D and instead of D
we consider Ωc(ψ), some sublevel set of a real analytic strongly plurisubharmonic
exhaustion function of D.

Step 3. Assume that the condition (2) is satisfied. Then, if the conclusion holds
true for all nonpluripolar compact sets A, then it holds also for all nonpluripolar
sets A.
Indeed, by Step 2, the conclusion holds for all non-empty open sets A. Take a
nonpluripolar set A. Since the set ∆(ε) is open, we have

h?{h?
∆(ε),D

<r},D = max
{

0,
h?∆(ε),D − r

1− r

}
, ε ∈ (0, 1).

Then
h?A,D−ε

1−ε ≤ h?∆(ε),D ≤ h?A,D (because of Proposition 2.7), from which follows

h?∆(ε),D ↗ h?A,D as ε↘ 0. Moreover,{
h?∆(ε),D <

r − ε
1− ε

}
⊂ ∆(r) ⊂ {h?∆(ε),D < r}, ε ∈ (0, r),

which implies

max
{

0,
h?∆(ε),D −

r−ε
1−ε

1− r−ε
1−ε

}
≥ h?∆(r),D ≥ max

{
0,
h?∆(ε),D − r

1− r

}
, ε ∈ (0, r),

and we get the conclusion as ε↘ 0.
Thus the proof under assumptions of (2) reduces to the case where A is compact.
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Step 4. Assume that the condition (1) is satisfied. Then, if theorem holds true
for all nonpluripolar compact and holomorphically convex sets A, then it holds true
for all nonpluripolar sets A.
Take a nonpluripolar set A. The set ∆(ε) is Runge in D (that is, for any compact

set K ⊂ ∆(ε), the set K̂X ∩∆(ε) is compact, see [17]) and in particular it is a Stein
space (see [8], Theorem 5.4), so using approximation by compact holomorphically
convex sets we see that the result holds true for the sets A = ∆(ε). We finish the
proof of Step 4 as in the Step 3.

Step 5. The case where A is compact and h?A,D is continuous.

The proof is parallel for both assumptions, (1) and (2). The set ∆[r] is compact
(by virtue of the continuity of h?A,D and Proposition 2.8). Let u ∈ PSH(D), u ≤
1, u ≤ 0 on ∆[r]. Put U := D \∆[r]. Then for a z0 ∈ ∂U we obtain

lim inf
U3z→z0

(h?A,D(z)− (1− r)u(z)− r) ≥ 0.

Hence (1 − r)u + r ≤ h?A,D in U (see Theorem 2.11). Thus h∆[r],D ≤ R and

h?∆[r],D ≡ R. Finally, considering a sequence of positive numbers (ri)i∈N increasing

to r we get L ≡ R.
Step 6. The case where A is compact.

First we carry out a construction of a decreasing sequence (Aj)j∈N of closed sets
containing A, and being a finite unions of closed “balls”.
Since D is metrizable (for both assumptions, (1) and (2), by virtue of Urysohn’s
Metrization Theorem), there exists a metric d, which gives the topology of D.
In the case where D is a Stein space take a finite set of charts (Ui, ϕi, Bi, Vi),

i = 1, . . . , s, and corresponding sets B̂(ai, ri), such that B̂(ai, ri) ⊂⊂ Ui and ϕi :

B̂(ai, ri) → Bi ∩ B(ϕi(ai), ri) ⊂⊂ Vi is a biholomorphism, i = 1, . . . , s, satisfying

A ⊂
s⋃
i=1

B̂(ai, ri).

We construct a set A1. Fix an a ∈ A. Without loss of generality we may assume that

a ∈ B̂(a1, r1) ⊂ U1. Take a number ra < 1 with B(ϕ1(a), ra) ⊂ B(ϕ1(a1), r1) and

small enough so that B̂(a, ra) = ϕ−1
1 (B1 ∩ B(ϕ1(a), ra)) ⊂ {x ∈ D : d(x,A) ≤ 1}.

We may now choose a finite number of sets B̂(a1
l , ra1

l
), l = 1, . . . , s1, with a1

l ∈ A, l =

1, . . . , s1, and such that A ⊂
s1⋃
l=1

B̂(a1
l , ra1

l
), and define A1 :=

s1⋃
l=1

B̂(a1
l , ra1

l
).

Suppose we have constructed the set Aj for some j ∈ N. Then we obtain Aj+1

as follows: take an a ∈ A and - as before - assume that a ∈ B̂(aj1, raj1
) ⊂ Aj ∩

Uia for some ia ∈ {1, . . . , s}. Take a number ra <
1
j+1 such that B(ϕia(a), ra) ⊂

B(ϕia(aj1), raj1
) and small enough so that B̂(a, ra) = ϕ−1

ia
(Bia∩B(ϕia(a), ra)) ⊂ {x ∈

D : d(x,A) ≤ 1
j+1}. Choose a finite number of sets B̂(aj+1

m , raj+1
m

),m = 1, . . . , sj+1,

with aj+1
m ∈ A,m = 1, . . . , sj+1, and such that A ⊂

sj+1⋃
m=1

B̂(aj+1
m , raj+1

m
), and define

Aj+1 :=
sj+1⋃
m=1

B̂(aj+1
m , raj+1

m
).

Clearly, (Aj)j∈N is a decreasing sequence of compact sets being finite unions of

closed “balls” with
∞⋂
j=1

Aj = A.

In the subcase where D is a manifold the above construction is carried out with
Bi = Vi.
Two cases have to be considered.

Case 1. The case where (2) is satisfied.
Using Corollary 4.5.9 from [13] (which is also true for our context and our “balls”,
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with a proof which goes along the same lines as in [13]: we only need to use the
approximation of D by strongly pseudoconvex domains and Theorem 10.4 from [18]
instead of Proposition 4.5.3, and pass to Cn by charts) we see that hAj ,D = h?Aj ,D
is continuous. Then we have

h{hAj,D≤r},D = max
{

0,
hAj ,D − r

1− r

}
.

Also, hAj ,D ↗ hA,D as j ↗∞ (in view of Proposition 2.9). Hence {hAj ,D ≤ r} ↘
{hA,D ≤ r} as j ↗∞. Thus h{hAj,D≤r},D ↗ h{hA,D≤r},D, from which follows

h{hA,D≤r},D = max
{

0,
hA,D − r

1− r

}
≤ R.

Hence h?{hA,D≤r},D ≤ R. Since the set {hA,D ≤ r} \∆[r] is pluripolar, h?∆[r],D ≤ R
and, as in Step 5, L ≡ R.

Case 2. The case where (1) is satisfied and A is additionally holomorphically
convex.
Here we do not know if the relative extremal functions of Aj ’s are continuous.
However, we may once again use the approximation argument to shift the situation
to the case of Step 5. It is to do as follows:

For any j ∈ N put Uj :=
sj⋃
m=1

B̂(ajm, rajm). Observe that the sequence (Uj)j∈N of

open sets is decreasing and enjoys property that for any open set U containing A
there is an index j(U) with Uj ⊂ U for all j ≥ j(U).
We use now Theorem 2.13 for Uj ’s as follows: for U1, using the same method as in
the proof of Theorem 2.13 (given in [22]), we find a compact and holomorphically
convex set E1 with continuous relative extremal function and such that A ⊂ intE1 ⊂
E1 ⊂ U1 (it suffices to consider δ + ε with small ε, instead of δ in the definition
of E in the proof in [22]). Suppose we have found sets E1, . . . , Ej for some j ∈
N. In this situation we obtain Ej+1 using the argument given above for Uj+1 ∩
intEj instead of U1. We easily see that the decreasing sequence of sets (Ej)j∈N
gives an approximation of A from above by holomorphically convex compacta with
continuous relative extremal functions. It now suffices to use the same argument
as in the end of the Case 1.

4. Applications of the main result

In this section we give some applications of our main result. First we need to define
the generalized (N, k)-crosses in the context of complex manifolds. Let Dj be an
nj-dimensional complex manifold and let ∅ 6= Aj ⊂ Dj for j = 1, . . . , N, N ≥ 2.
For k ∈ {1, . . . , N} let I(N, k) := {α = (α1, . . . , αN ) ∈ {0, 1}N : |α| = k}, where
|α| := α1 + . . .+ αN . Put

Xα,j :=

{
Dj , if αj = 1

Aj , if αj = 0
, Xα :=

N∏
j=1

Xα,j .

For an α ∈ I(N, k) such that αr1 = . . . = αrk = 1, αi1 = . . . = αiN−k = 0, where
r1 < . . . < rk and i1 < . . . < iN−k, put

Dα :=

k∏
s=1

Drs , Aα :=

N−k∏
s=1

Ais .

For an a = (a1, . . . , aN ) ∈ Xα, α as above, put a0
α := (ai1 , . . . , aiN−k) ∈ Aα.

Analogously, define a1
α := (ar1 , . . . , ark) ∈ Dα. For every α ∈ I(N, k) and every

a = (ai1 , . . . , aiN−k) ∈ Aα define

ia,α = (ia,α,1, . . . , ia,α,N ) : Dα → Xα,



8 ARKADIUSZ LEWANDOWSKI

ia,α,j(z) :=

{
zj , if αj = 1

aj , if αj = 0
, j = 1, . . . , N, z = (zr1 , . . . , zrk) ∈ Dα

(if αj = 0, then j ∈ {i1, . . . , iN−k} and if αj = 1, then j ∈ {r1, . . . , rk}). Similarly,
for any α ∈ I(N, k) and any b = (br1 , . . . , brk) ∈ Dα define

lb,α = (lb,α,1, . . . , lb,α,N ) : Aα → Xα,

lb,α,j(z) :=

{
zj , if αj = 0

bj , if αj = 1
, j = 1, . . . , N, z = (zi1 , . . . , ziN−k) ∈ Aα.

Definition 4.1. (cf. [14]) For any α ∈ I(N, k) let Σα ⊂ Aα. We define a gener-
alized (N, k)-cross

TN,k := TN,k((Aj , Dj)
N
j=1, (Σα)α∈I(N,k)) =

⋃
α∈I(N,k)

{a ∈ Xα : a0
α /∈ Σα}

and its center

C(TN,k) := TN,k ∩ (A1 × . . .×AN ).

It is straightforward that

C(TN,k) = (A1 × . . .×AN ) \
⋂

α∈I(N,k)

{z ∈ A1 × . . .×AN : z0
α ∈ Σα},

which implies that C(TN,k) is non-pluripolar provided that A1 × . . .× AN is non-
pluripolar and at least one of the Σα’s is pluripolar (cf. [12], Proposition 2.3.31).
Note that if we take Σα = ∅ for every α ∈ I(N, k), then in the definition above
we get the (N, k)-cross (see [11])

XN,k = XN,k((Aj , Dj)
N
j=1) := TN,k((Aj , Dj)

N
j=1, (∅)α∈I(N,k)).

Definition 4.2 ([11]). For an (N, k)-cross define its envelope by

X̂N,k = X̂N,k((Aj , Dj)
N
j=1) :=

{
(z1, . . . , zN ) ∈ D1× . . .×DN :

N∑
j=1

h?Aj ,Dj (zj) < k
}
.

Note the obvious inclusion X̂N,k−1 ⊂ X̂N,k.

As it was already mentioned, using Theorem 1.1 we may derive a formula for the
relatively extremal function of the envelope of (N, k − 1)-cross with respect to the
envelope of (N, k)-cross, which will play a fundamental role in the proof of Theorem
4.6.

Theorem 4.3. Let Dj be a Stein manifold and let Aj ⊂ Dj be locally pluriregu-
lar, j = 1, . . . , N. Then

h?
X̂N,k−1,X̂N,k

(z) = max
{

0,

N∑
j=1

h?Aj ,Dj (zj)− k + 1
}
, z = (z1, . . . , zN ) ∈ X̂N,k.

Proof. We carry out this proof exactly the same as in [11], bearing in mind
that the product property for relatively extremal function is true also for domains
in Stein manifolds (see [6]).

In fact, using [5], we easily see that Theorem 4.3 holds true also in the situation
where the Dj ’s are irreducible, locally irreducible, weakly parabolic Stein spaces.
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Definition 4.4. We say that a function f : TN,k → C is separately holomorphic
on TN,k if for every α ∈ I(N, k) and for every a ∈ Aα \ Σα the function

Dα 3 z 7→ f(ia,α(z))

is holomorphic. In this case we write f ∈ Os(TN,k).
We denote by Ocs(TN,k) the space of all f ∈ Os(TN,k) such that for any α ∈

I(N, k) and for every b ∈ Dα the function

Aα \ Σα 3 z 7→ f(lb,α(z))

is continuous.

Theorem 4.5 (cf. [12], Theorem 7.1.4). Let Dj be a Stein manifold, let Aj ⊂ Dj

be locally pluriregular, j = 1, . . . , N . Let Σα ⊂ Aα be pluripolar, α ∈ I(N, 1).
Put XN,1 := XN,1((Aj , Dj)

N
j=1),TN,1 := TN,1((Aj , Dj ,Σj)

N
j=1). Let f ∈ Ocs(XN,1).

Then there exists a uniquely determined f̂ ∈ O(X̂N,1) such that f̂ = f on TN,1 and

f̂(X̂N,1) ⊂ f(TN,1).

Proof. The proof may be rewritten almost verbatim from [12].

Theorem 4.6. Let Dj be a union of an increasing sequence of Stein mani-
folds and let Aj ⊂ Dj be locally pluriregular, j = 1, . . . , N. Take Σα ⊂ Aα
pluripolar, α ∈ I(N, k) and put TN,k := TN,k((Aj , Dj)

N
j=1, (Σα)α∈I(N,k)),XN,k :=

XN,k((Aj , Dj)
N
j=1). Then any function f ∈ F := Ocs(TN,k) admits a holomorphic

extension f̂ ∈ O(X̂N,k) such that f̂ = f on TN,k and f̂(X̂N,k) ⊂ f(TN,k).

Proof. The inclusion f̂(X̂N,k) ⊂ f(TN,k) for f ∈ F is to obtain in a standard
way (cf. [12], Lemma 2.1.14; observe it is also true in our context).
Observe that without loss of generality we may assume that each Dj is a Stein
manifold. Furthermore, for each Dj we may find an exhausting sequence of strongly
pseudoconvex relatively compact open sets with smooth boundaries (by considering
sublevel sets of a smooth strictly plurisubharmonic exhaustion function for each
Dj). Thus, it is enough to prove the theorem with additional assumptions that
each Dj is strongly pseudoconvex relatively compact open subset (with smooth

boundary) of some Stein manifold D̃j and Aj ⊂⊂ Dj .
We apply induction over N. There is nothing to prove in the case N = k. Moreover,
the case k = 1 is solved by Theorem 4.5. Thus, the conclusion holds true for N = 2.
Suppose it holds true for N − 1 ≥ 2. Now, we apply induction over k. For k = 1, as
mentioned, the result is known. Suppose that the conclusion is true for k − 1 with
2 ≤ k ≤ N − 1.

Fix an f ∈ F . Define

Q := QN = {zN ∈ AN : ∃α ∈ I0(N, k) : (Σα)(·,zN ) /∈ PLP},
where I0(N, k) := I(N, k) ∩ {α : αN = 0}. Then Q ∈ PLP (cf. [12], Proposition
2.3.31). For a zN ∈ AN \Q put

TN−1,k(zN ) := TN−1,k((Aj , Dj)
N−1
j=1 , ((Σ(β,0))(·,zN ))β∈I(N−1,k)).

Consider also the generalized (N − 1, k − 1)-cross

TN−1,k−1 := TN−1,k−1((Aj , Dj)
N−1
j=1 , (Σ(β,1))β∈I(N−1,k−1)).

It can be easily seen that for a fixed zN ∈ AN \Q we have

(TN,k)(·,zN ) = TN−1,k(zN ) ∪TN−1,k−1,

where (TN,k)(·,zN ) is the fiber of the set TN,k over zN . Define

YN−1,k := XN−1,k((Aj , Dj)
N−1
j=1 ), YN−1,k−1 := XN−1,k−1((Aj , Dj)

N−1
j=1 ).
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For any zN ∈ AN \ Q we have f(·, zN ) ∈ Ocs(TN−1,k(zN )) and, moreover, for any
zN ∈ DN we have f(·, zN ) ∈ Ocs(TN−1,k−1). Then, by inductive assumption, for

any zN ∈ AN \ Q there exists an f̂zN ∈ O(ŶN−1,k) such that f̂zN = f(·, zN ) on

TN−1,k(zN ). Analogously, for any zN ∈ DN there exists a ĝzN ∈ O(ŶN−1,k−1)
such that ĝzN = f(·, zN ) on TN−1,k−1.

Define a 2−fold classical cross (cf. [10])

Z := X2,1((Bj , Ej)
2
j=1),

where B1 = ŶN−1,k−1, B2 = AN \Q,E1 = ŶN−1,k, E2 = DN . Clearly

Z = (ŶN−1,k−1 ×DN ) ∪ (ŶN−1,k × (AN \Q)).

Applying Theorem 4.3 and pluripolarity of Q we get Ẑ = X̂N,k.
Let F : Z→ C be given by the formula

F (z′, zN ) :=

{
f̂zN (z′), if (z′, zN ) ∈ ŶN−1,k × (AN \Q),

ĝzN (z′), if (z′, zN ) ∈ ŶN−1,k−1 ×DN .

First, observe that F is well-defined. Indeed, we only have to check that for any

zN ∈ AN \ Q we have equality f̂zN = ĝzN on ŶN−1,k−1. In fact, since both f̂zN
and ĝzN are extensions of f(·, zN ), we only need to prove existence of some non-
pluripolar set B ⊂ TN−1,k(zN )∩TN−1,k−1 and use the identity principle. Observe
that the set

B := C(TN−1,k(zN )) ∩ C(TN−1,k−1)

is good for our purpose.
Now we prove that F ∈ Os(Z). We have to prove that for each z′ ∈ ŶN−1,k−1

the function DN ∈ zN 7→ F (z′, zN ) is holomorphic (or equivalently, that F ∈
O(ŶN−1,k−1×DN )). We already know that F (·, zN ) is holomorphic for every zN ∈
DN . To show that F ∈ O(ŶN−1,k−1 ×DN ) we will use Terada’s theorem (or the
Cross theorem for manifolds - see [12], Theorem 6.2.2). Put

WN−1,k−1 := TN−1,k−1((Aj , Dj)
N
j=2, (Σ(1,β))β∈I(N−1,k−1)),

ZN−1,k−1 := XN−1,k−1((Aj , Dj)
N
j=2).

From the inductive assumption, for any z1 ∈ D1 there exists an ĥz1 ∈ O(ẐN−1,k−1)

with ĥz1 = f(z1, ·) on WN−1,k−1. Thus we get

F (z1, . . . , zN ) = f(z1, . . . , zN ) = ĥz1(z2, . . . , zN )

for (z1, . . . , zN ) ∈ (TN−1,k−1 × DN ) ∩ (D1 ×WN−1,k−1). It suffices to show that
there exists a non-pluripolar set C such that

C ×DN ⊂ (TN−1,k−1 ×DN ) ∩ (D1 ×WN−1,k−1).

It is easy to see that the set with the required properties is

C := C(TN−1,k−1) \
⋂

α∈I(N,k):α1=αN=1

{z ∈
N−1∏
j=1

Aj : z0
α ∈ Σα}.

From the Cross theorem for manifolds we get the existence of a function f̂ ∈ O(Ẑ)

with f̂ = F on Z.

We have to verify that f̂ = f on TN,k. Take a point a ∈ TN,k. The con-
clusion is obvious if a ∈ TN−1,k−1 × DN ⊂ Z. Suppose, without losing gener-
ality, that a = (a1, . . . , ak, ak+1, . . . , aN ) ∈ D1 × . . . × Dk × (Aα \ Σα), where



THE RELATIVE EXTREMAL FUNCTION 11

α = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
N−k

). Observe that we have

T :=
⋃

zN∈AN\Q

TN−1,k(zN )× {zN} ⊂ ŶN−1,k × (AN \Q) ⊂ Z.

We have also
T ⊂

⋃
zN∈AN\Q

(TN,k)(·,zN ) × {zN} ⊂ TN,k.

Thus, if b = (b′, bN ) ∈ T , then f̂(b) = F (b) = f̂bN (b′) = f(b). Bearing this in
mind, we easily see that it suffices to find a sequence

(bν)∞ν=1 ⊂ T ∩ {(a1, . . . , ak)} × (Aα \ Σα)

such that bν → a, and then continuity of f(a1, . . . , ak, ·) will end the proof.
Since Q is pluripolar, there exists a sequence (bN

ν) convergent to aN such that

(bN
ν) ⊂ AN \ Q. Put P :=

∞⋃
ν=1

(Σα)(·,bNν), which is a pluripolar set. This guar-

antees the existence of a sequence ((bk+1
ν , . . . , bN−1

ν)) ⊂ (Ak+1× . . .×AN−1) \P,
convergent to (ak+1, . . . , aN−1). Finally we put bν := (a1

α, bk+1
ν , . . . , bN−1

ν). It is
obvious that bν → a and that for every ν ∈ N, bν ∈ TN−1,k(bN

ν)× {bNν} ⊂ T .
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