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A TOPOLOGICAL APPROACH TO THE ALGORITHMIC COMPUTATION
OF THE CONLEY INDEX OF POINCARÉ MAPS

MARIAN MROZEK, ROMAN SRZEDNICKI, AND FRANK WEILANDT

ABSTRACT. A new algorithm for computing the Conley index of the Poincaré map of a
time-periodic non-autonomous ordinary differential equation is presented. The algorithm
is based on a theorem which reduces the computation of the index to the study of certain
singular chains on an index pair for some small-step translation operator of the equation. In
particular, no numerical enclosures of the Poincaré map are required. Concrete numerical
examples for planar systems are provided.

1. INTRODUCTION

1.1. Motivation. Differential equations constitute one of the fundamental tools of con-
temporary science and technology. Since in most cases explicit formulas for solutions
are not available, usually qualitative analytic or quantitative numerical methods are used
to study the flow induced by a differential equation. Both approaches have their limi-
tations. Analytic methods are rigorous but of limited scope and often too complex for
concrete problems of practical interest. Numerical methods are approximate but relatively
straightforward to apply and, therefore, broadly used. Unfortunately, numerical errors may
significantly falsify the information by introducing spurious or ghost solutions. These are
approximate solutions which exhibit some qualitative features such as periodic or chaotic
behavior but the reason for this behavior does not lie in the differential equation but in the
numerical method. The existence of such examples has been well documented in the litera-
ture (see [8, 10, 9] or [29] and the references within). This introduces a level of uncertainty
which may be not acceptable in some safety critical applications such as flight control or
nuclear power plant design.

In the last twenty years there have been several successful attempts to combine the
qualitative analytic methods with quantitative numerical methods in the form of computer
assisted proofs consisting of algorithmic qualitative analysis based on rigorous numerical
methods. This approach brought many significant achievements [14, 32, 1, 2, 33, 3, 13, 25].
Although computer assisted proofs require substantial computational power, which limits
the method today, the rapid growth of computer technology together with the ongoing
progress in the development of new algorithms makes them a likely method in the future.
In this paper we go in this direction and present theory and algorithms for efficient compu-
tation of the Conley index of isolated invariant sets for Poincaré maps, a crucial ingredient
of several computer assisted proofs.
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1.2. Background. The Conley index is a topological invariant frequently used in com-
puter assisted proofs in dynamics. It is defined for isolated invariant sets of flows via
so called isolating blocks [4, 5] and for discrete dynamical systems via index pairs [18].
Roughly speaking, an index pair of an isolated invariant set S of a discrete dynamical sys-
tem generated by a map f is a pair (N,L) of compact sets such that N \L is a neighborhood
of S and L is positively invariant with respect to N. It follows that f generates a continu-
ous map f(N,L) of the quotient space N/L, hence also an endomorphism H( f(N,L)) of the
homology H(N/L,∗). Then, the reduction by the Leray functor, which in the finite dimen-
sional case consists in quotienting out the union of the kernels of iterates of H( f(N,L))),
leads to an automorphism RH( f(N,L)) of some vector space. We call the conjugacy class
of RH( f(N,L)) the Conley index of S and denote it CH(S, f). In particular, if the Lefschetz
number of CH(S, f) is nonzero, then f has a fixed point in S.

So far, no useful algorithms constructing isolating blocks for flows are known, but algo-
rithms constructing index pairs for discrete dynamical systems are available and reasonably
efficient [31, 11, 20]. On the theoretical side, the Conley index for a flow is in one-to-one
correspondence with the Conley index for the h-translation operator of the flow [17]. The
algorithmic version of the result is less general [23, 24] and requires some caution [15] but
may be used fruitfully to compute algorithmically the Conley index for flows by applying
an algorithm for maps. As we explain in the overview and show in detail in the paper, a
similar result may be used to reduce the computation of the Conley index of a Poincaré
map to the study of an index pair of the h-translation operator of the flow.

Recall that the Poincaré map is defined on a hypersurface transversal to the solutions of
the differential equation, the so called Poincaré section. It sends a point on the section to its
first return time to the section along the trajectories of the flow. Periodic trajectories of the
differential equation transversal to the hypersurface are in one-to-one correspondence with
the fixed points of the Poincaré map. Thus, understanding the dynamics of the Poincaré
map is crucial in understanding the dynamics of the differential equation, in particular
in locating periodic orbits or establishing chaotic behavior. In particular, whenever the
Conley index of a Poincaré map detects a fixed point, it also detects a periodic solution of
the differential equation.

The computation of the Conley index may be achieved algorithmically if good, rigorous
combinatorial enclosures of the values of the map are available. However, in the case of a
Poincaré map such enclosures are very expensive to obtain, because they require long time
rigorous numerical integration of the differential equations and the size of the enclosures
grows exponentially with the integration time. In case of differential equations with strong
expansion this is often prohibitive.

In this paper we restrict the study to the case of a T -periodic, non-autonomous ordinary
differential equation. We treat it as an autonomous differential equation in the extended
phase space Ω. It induces a differential equation on the cylinder Σ obtained by identifying
points in Ω whose time coordinates differ by T . In practice, Ω =R×Rn and Σ = S1×Rn,
where the circle S1 is equal to R/TZ. Then, for every hyperplane H in Ω orthogonal to
the time axis its projection HΣ onto Σ is a Poincaré section and the corresponding Poincaré
map is just the T -translation along the trajectories.

1.3. Overview. In this brief overview we present the main results of the paper. We con-
centrate on their applicability and skip some technical assumptions, irrelevant for the gen-
eral idea. We begin with the construction of an index pair (N,L) of an isolated invariant
set S for the time-h discretization of the system on Σ with h substantially smaller than T
in order to avoid long time integration. In the construction we use the algorithm for index
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pairs introduced in [20]. Put H = 0×Rn. The intersection S0 := S∩HΣ is then an isolated
invariant set for the Poincaré map, as we show in Proposition 4.1. Unfortunately, the inter-
section (N0,L0) := (N ∩HΣ,L∩HΣ) is not necessarily an index pair for S0. But, our main
result, Theorem 4.5, claims that the Conley index of the Poincaré map can be obtained from
(N,L) and (N0,L0) in the following way. We lift the pair (N,L) to (Ñ, L̃) in the extended
phase space Ω. Given a relative chain u in (N0,L0) we construct a chain w in Ñ∩ [0,T ]×Rn

whose boundary is the sum of the lift of u, the lift of some chain v in (N0,L0), and a chain in
L̃∩ [0,T ]×Rn. By picking up a collection of chains ui generating a basis of the homology
of (N0,L0) and decomposing each homology class of the corresponding vi on this basis we
obtain a matrix A whose i-th column is the vector of coefficients of vi in the decomposition.
We prove that, up to conjugacy, the homological Conley index of the Poincaré map is just
the Leray reduction of A. We provide an algorithm constructing the matrix A by pushing
forward the chains ui (Algorithm 6). The computation of the Leray reduction is then just
elementary linear algebra.

The novelty and strength of the proposed method lies in replacing the very expensive
and often prohibitive computations of the combinatorial enclosure of the Poincaré map by
purely combinatorial computations of the chains vi from the chains ui.

The method presented in this paper has its roots in a theoretical result [28] concerning
isolating segments, a generalization of isolating blocks. An algorithmic version of the re-
sults of [28] has been presented in [21]. The method of [21] provides results but is painful
in implementation, because each individual case requires manual construction of isolat-
ing segments. Roughly speaking, this is related to the fact that verifying algorithmically
that a given polytope is an isolating block is possible, but we have no useful algorithms
constructing isolating blocks.

The rest of the paper is organized as follows. Section 2 contains preliminaries. Section 3
introduces isolated invariant sets and the Conley index for flows. Section 4 presents the
main theoretical result of the paper, i.e., Theorem 4.5 showing how the computation of
the Conley index of a Poincaré map may be reduced to the study of the time h-translation
along the trajectories of the flow. Section 5 provides the proof of the main theoretical
result. Section 6 recalls the main ideas concerning the rigorous numerics of dynamical
systems. Section 7 discusses the algorithm based on Theorem 4.5. Section 8 presents the
results of numerical experiments based on the algorithms of Section 7.

2. PRELIMINARIES

2.1. Notation. Let k = 1,2, . . .. For a map f : X → X we denote by f k its k-th iterate, i.e.,

f k := f ◦ . . .◦ f (k times).

We put also f 0 := identity and, if f is injective, f−k := ( f−1)k.
In this paper, F denotes a fixed field. In the sequel the notion “vector space” or “linear

space” refers to a vector space over F. We write V ∼= W if the vector spaces V and W
are isomorphic. If S ⊂ V , by Lin(S) we denote the subspace of V spanned by S. Let
A = [ai j]i, j=1,...,k be a (k× k)-matrix over F and u = (u1, . . . ,uk) be an ordered basis of a
vector space V . By Au we denote the linear endomorphism V →V uniquely determined by

Au(u j) = ∑
i

ai jui.

In case V = Fk and e is the canonical basis of Fk, we identify A with Ae.
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By a graded vector space we mean a sequence V = {Vn}n∈Z of vector spaces. We
identify V with the direct sum of Vn, i.e.,

V =
⊕
n∈Z

Vn.

The graded vector space V is of finite type if Vn is finite-dimensional for all n and Vn = 0
for all n < 0 as well as for almost all n≥ 0.

By a graded linear map between graded vector spaces V and W we mean a sequence
φ := {φn} of linear maps φn : Vn →Wn. We identify φ with the direct sum of maps φn
restricted to

⊕
Vn→

⊕
Wn.

Let q and kn, where n = 0, . . . ,q, be nonnegative integers. Put k := ∑
q
n=0 kn. By a graded

(k0, . . . ,kq)-matrix (or, less precisely, a graded k-matrix) we mean a square k-matrix A of
the diagonal-block form

A = diag(A(0), . . . ,A(q)) :=


A(0) 0

0 A(1)
. . .

A(q)

 ,
where each A(n) is a square kn-matrix. We treat such a matrix as a graded endomorphism
of the graded vector space of finite type

Fk =
⊕
n∈Z

Fkn ,

where kn = 0 if n > q or n < 0.
Assume V is of finite type and let φ be a graded linear endomorphism V → V . The

Lefschetz number of φ is defined as

Λ(φ) :=
∞

∑
n=0

(−1)ntraceφn.

Assume Vn = 0 for n > q and for n < 0. For each n = 0, . . . ,q let v(n) be a basis of Vn and
let A(n) = [a(n)i j] be the matrix of φn with respect to v(n). Then

Λ(φ) = Λ(A) =
q

∑
n=0

(−1)n
dimVn

∑
i=0

a(n)ii.

2.2. Retractors. Denote by Vect the category of vector spaces over F and let End be the
category of endomorphisms of Vect. Recall that the objects of End are pairs (V,α) where
V ∈ Vect and α : V →V is an endomorphism in Vect. A morphism in End from (V,α) to
(W,β ) is a linear map f : V →W such that f ◦α = β ◦ f . We denote this morphism by
~fαβ : (V,α)→ (W,β ). We refer to f as the underlying map of ~fαβ . Note that two different
morphisms in End may have the same underlying map, hence we omit the index αβ in the
notation ~fαβ only if α and β are really clear from the context.

The forgetful functor F : End→ Vect is defined by

(V,α) 7→ V,
~fαβ 7→ f .

The following proposition may be easily verified.

Proposition 2.1. Let (V,α) and (W,β ) be objects of End.
(i) If (V,α) ∈ End, then ~ααα ∈ End((V,α),(V,α)).
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(ii) Let f : V →W be a morphism in Vect, i.e., a homomorphism of vector spaces,
and assume that it induces a morphism ~fαβ : (V,α)→ (W,β ) in End. Then ~fαβ is
an isomorphism (respectively epimorphism, monomorphism) in End if and only if
f = F~fαβ is an isomorphism (respectively epimorphism, monomorphism) in Vect.

Let Aut denote the category of automorphisms of Vect. Recall that Aut is the full
subcategory of End whose objects are pairs (V,α) such that α : V →V is an automorphism
in Vect.

Let R : End→ Aut be a covariant functor. Then, given an object (V,α) ∈ End, its
associated object in Aut is R(V,α) = (Ro(V,α),Ra(V,α)), where Ro(V,α) is an object in
Vect and Ra(V,α) is an automorphism of Ro(V,α). We say that R is a retractor if R is
identity on Aut. By Proposition 2.1(i), given (V,α) in End, we have a morphism ~ααα in
End. We say that R is normal, if for any object (V,α) in End the underlying map of R~ααα

coincides with Ra(V,α), that is if FR~ααα = Ra(V,α).
Let (V,α), (W,β ) be two objects of End. Then, for any r,s ≥ 1 we have objects

(V,αr), (W,β s) in End. If for some f : V → W we have ~fαβ : (V,α) → (W,β ) and
~fαrβ s : (V,αr)→ (W,β s) as morphisms in End, then in general they are different. Hence,
also the morphisms R~fαβ and R~fαrβ s or even their underlying maps may be different. We
say that R is consistent if for any f : V →W such that ~fαβ : (V,α)→ (W,β ) and any r,s≥ 1
such that ~fαrβ s : (V,αr)→ (W,β s) we have FR~fαβ = FR~fαrβ s , i.e., if the underlying linear
maps of R~fαβ and R~fαrβ s coincide.

The simplest example of a normal, consistent retractor is the Leray functor [19] defined
as follows. For an object (V,α) in End, let gker(α) = ∪n∈N ker(αn) and V =V/gker(α).

This yields an induced map α : V → V , which is injective. Then let V = gim(α) :=
∩n∈N im(αn) and let R(V,α) = (V ,α �V ). A map f : V →W then induces a map V →W
which describes ~f . The normality of the Leray functor is immediate and consistency fol-
lows because for any linear endomorphism γ and n≥ 1: gker(γ) = gker(γn) and gim(γ) =
gim(γn). One can show that also the direct limit functor and the inverse limit functor [19]
are normal, consistent retractors.

Proposition 2.2. Assume R is a normal, consistent retractor. Let α : V →V and β : W →
W be endomorphisms in Vect and f : V→W be a linear map in Vect such that ~fαβ : (V,α)→
(W,β ) is a morphism in End. Assume there are integers r,s≥ 1 and a linear map g : W →V ,
such that the diagram

(1)

V W

V W
��

αr

//
f

��

β s

ww

g

//
f

commutes. Then R~fαβ : R(V,α)→ R(W,β ) is an isomorphism.
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Proof. Observe that diagram (1) yields the following two commutative diagrams in End
where the right one is built from the left one by applying the functor R.

(V,αr) (W,β s)

(V,αr) (W,β s)
��

~αr
αrαr

//
~fαrβ s

��

~β s
β sβ s

ww

~gβ sαr

//
~fαrβ s

 

R(V,αr) R(W,β s)

R(V,αr) R(W,β s)
��

R~αr
αrαr

//
R~fαrβ s

��

R~β s
β sβ s

ww

R~gβ sαr

//
R~fαrβ s

Applying the forgetful functor to the right diagram, we obtain the following commutative
diagram in Vect.

FR(V,αr) FR(W,β s)

FR(V,αr) FR(W,β s)
��

FR~αr
αrαr

//
FR~fαrβ s

��

FR~β s
β sβ s

ww

FR~gβ sαr

//
FR~fαrβ s

Since R is a normal rectractor, the morphisms FR~αr
αrαr and FR~β s

β sβ s are automorphisms
in Vect. Hence, it follows from the commutativity of the upper triangle that FR~fαrβ s is a
monomorphism in Vect, because FR~αr

αrαr is an automorphism. Similarly, the commu-
tativity of the lower triangle implies that FR~fαrβ s is an epimorphism, because FR~β s

β sβ s

is an automorphism. Hence, FR~fαrβ s is an isomorphism in Vect. Since R is consistent,
also FR~fαβ is an isomorphism in Vect. Thus, by Proposition 2.1(ii) and since R~fαβ is a
morphism in End, we conclude that R~fαβ is an isomorphism in End. �

2.3. Topology. Let (X ,A) be a topological pair and let ∗ be a point outside of X . Define a
set

X/A := (X \A)∪{∗}
and the quotient map q : X ∪{∗}→ X/A,

q(x) :=

{
x if x ∈ X \A,
∗ if x ∈ A or x = ∗.

In particular X/∅ = X ∪{∗}. Usually, we write [x] instead of q(x). Endow X/A with the
quotient topology, i.e., U is open in X/A if and only if q−1(U) is open in X ∪{∗} with the
direct sum topology. As a consequence, a map X/A→ Y is continuous if and only if its
composition with q is a continuous map X ∪{∗}→ Y .

We denote by H the singular homology functor with coefficients in the field F. We
consider singular homology theory based on simplices. Recall, that for d ∈N the standard
d-dimensional simplex is the set ∆d := {x ∈ Rd+1 : ∑i xi = 1, xi ≥ 0}. A d-dimensional
singular simplex on a topological space X is a continuous map ∆d → X . A chain is a
formal linear combination ∑i aiσi, where ai ∈ F and σi are singular simplices of the same
dimension. A chain is called d-dimensional provided all σi are d-dimensional. The support
of a d-dimensional chain c := ∑i aiσi, ai 6= 0, is defined as

|c| :=
⋃

i

σi(∆d).

The group of chains on X is denoted by S(X) (actually, in our considerations it is a graded
vector space over F). By ∂ we denote the boundary operator S(X)→ S(X). A continuous
map f : X → Y induces the chain map S( f ) : S(X)→ S(Y ). If A ⊂ X (i.e., (X ,A) is a
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topological pair), we treat S(A) as a subspace of S(X) (i.e., if c ∈ S(X) and |c| ⊂ A, then
we regard c also as an element of S(A)). By the group of cycles on (X ,A) we mean

Z(X ,A) := {z ∈ S(X) : ∂ z ∈ S(A)}.

The homology class of a cycle z ∈ Z(X ,A) is denoted by [z](X ,A). Recall that [z](X ,A) =

[z′](X ,A) provided there exist w ∈ S(X) and a ∈ S(A) such that

z− z′ = ∂w+a.

The chain map S( f ) induced by a continuous map f : (X ,A)→ (Y,B) maps Z(X ,A) to
Z(Y,B).

A topological space is called a Euclidean neighborhood retract (shortly: ENR) if it is
homeomorphic to a neighborhood retract in a Euclidean space. For properties of ENRs we
refer to [6]. In particular,

Proposition 2.3 ([6, Exercise IV.8.13.6]). If (X ,A) is a pair of ENRs and A is closed in X
then the quotient map induces an isomorphism H(X ,A)→ H(X/A,∗).

3. ISOLATED INVARIANT SETS AND CONLEY INDEX

3.1. Local dynamical systems. Throughout the rest of the paper we assume that X is a
metrizable locally compact space. By a continuous local dynamical system (shortly: a
continuous system) on X we mean a continuous map φ : D→ X , where D is an open subset
of X×R, such that for every x ∈ X ,

Dx := {t ∈ R : (x, t) ∈ D} is an interval containing 0,(D1)

φ(x,0) = x,(D2)

∀t ∈ Dx : {s ∈ Dφ(x,t)⇐⇒ s+ t ∈ Dx, φ(x, t + s) = φ(φ(x, t),s)}.(D3)

Frequently we write φt(x) instead of φ(x, t) and if A ⊂ X and J ⊂ R we write φ(A,J)
instead of φ(A×J). A set of the form φ(x, [0, t]) for some x ∈ X and 0≤ t < Dx is called a
segment; x is its starting point and t is its length. (These notions are uniquely determined
provided x is not a stationary point and t is less than the minimal period of x in case x is
periodic.)

A discrete local dynamical system (or shortly: a discrete system) on X is a map f : U→
X such that U is an open subset of X and f is homeomorphism onto its image f (U).

In the case D = X ×R the system φ is called global (or called a continuous dynamical
system). Similarly, f is called a global system if it is a homeomorphism X → X .

Let S ⊂ X . The set S is called invariant for a continuous system φ : D→ X (a discrete
system f : U→ X) if for every x∈ S, Dx =R and φt(S) = S for t ∈R (respectively if S⊂U
and f maps S homeomorphically onto S).

Let φ : D→ X be a continuous system and let x ∈ X be such that [0,∞) ⊂ Dx. The
ω-limit set of x is defined as

ω(x) :=
⋂
t≥0

cl(φ(φt(x), [0,∞))).

If f : U → X is a discrete system and f n(x) ∈U for every n ∈ N, define

ω(x) :=
⋂

n∈N
cl{ f n+k(x) : k ∈ N}.

In both cases, for each x its ω-limit set is closed and invariant.
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3.2. Isolated invariant sets, index pairs, and index maps. Let A ⊂ X . Let φ : D→ X
be a continuous system and let f : U → X be a discrete one. By the invariant part of
A (denoted Inv(A) or, more precisely, Inv(A,φ) and Inv(A, f ), respectively) we mean the
maximal invariant set contained in A. It is a compact set provided A is compact. An
invariant set S is called isolated if it is equal to the invariant part of some neighborhood N
of S. Such an N is then called an isolating neighborhood (for S) provided it is compact.

Let (N,L) be a pair of compact subsets of X . Assume first φ is a continuous system on
X . The pair (N,L) is called an index pair for φ if

Inv(cl(N \L))⊂ int(N \L),(P1)

∀x ∈ L : {φ(x, [0, t])⊂ N⇒ φ(x, [0, t])⊂ L},(P2C)

∀x ∈ N : {φ(x,Dx∩ [0,∞)) 6⊂ N⇒∃t ≥ 0: φ(x, [0, t])⊂ N,φt(x) ∈ L}.(P3C)

An index pair (N,L) is called regular if the map

σ : N→ [0,∞], σ(x) :=

{
sup{t > 0: φ(x, [0, t])⊂ N \L} if x ∈ N \L,
0 if x ∈ L,

called the exit-time map, is continuous (compare [27, Definition 5.1]).
Assume now f : U → X is a discrete system on X and L ⊂ N ⊂U . The pair (N,L) is

called an index pair for f if it satisfies (P1) and

N∩ f (L)⊂ L,(P2D)

N∩ f−1(X \N)⊂ L.(P3D)

The pair (N,L) is called a weak index pair for f if the conditions (P1) and (P2D) hold, and

(P3W) cl( f (N)\N)∩N ⊂ L.

Observe that an index pair is also a weak index pair. Define f(N,L) : N/L→ N/L as

f(N,L)([x]) :=

{
f (x) if x, f (x) ∈ N \L,
∗ otherwise.

In particular, f(N,L)(∗) = ∗.

Proposition 3.1. If (P2D) is satisfied, then f(N,L) is continuous if and only if (P3W) holds.
�

It follows by Proposition 3.1 that f(N,L) is continuous provided (N,L) is a weak index
pair. In that case f(N,L) is called the index map. If S is an isolated invariant set for φ (or f )
and S = Inv(cl(N \L)), we call (N,L) an index pair for (S,φ) (for (S, f ), respectively).

Proposition 3.2. Let (N,L)⊂ (N′,L′) be weak index pairs for (S, f ) and

(2) f (N)∩N′ ⊂ N.

Let i : N/L→ N′/L′ denote the map induced by the inclusion. Then
(a) the diagram

N/L N′/L′

N/L N′/L′
��

f(N,L)

//i

��

f(N′,L′)

//i

commutes;
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(b) if, moreover,

(3) L′ ⊂ N

then there exists n0 such that for every n≥ n0 there exists a continuous map g such
that the diagram

N/L N′/L′

N/L N′/L′
��

f n
(N,L)

//i

��

f n
(N′,L′)

ww

g

//i

commutes.

Proof. Observe first that the quotient topology on N/(N ∩L′) ⊂ N′/L′ coincides with the
topology induced from N′/L′ because N and L′ are closed in N′. Let the maps

i′ : N/L→ N/(L′∩N), i′′ : N/(L′∩N) ↪→ N′/L′

be induced by the inclusions. Define

r : N/(L′∩N)→ N/(L′∩N),

r([x]) :=

{
f (x) if x ∈ N \L′ and f (x) ∈ N \L′,
∗, elsewhere.

By (2), r is a restriction of f(N′,L′), hence it is continuous and the right-hand side rectangle
in the diagram below commutes.

N/L N/(L′∩N) N′/L′

N/L N/(L′∩N) N′/L′
��

f(N,L)

//i′ //i′′

��

r
��

f(N′,L′)

//i′ //i′′

The left-hand side rectangle commutes as well, because if x ∈ L′ ∩N and f (x) ∈ N ⊂ N′,
then f (x) ∈ L′. Since i = i′′ ◦ i′, the proof of (a) is finished.

In order to prove (b) note that

S = Inv(cl(N \L)) = Inv(cl(N′ \L′)).

We assert

∃k0 ∈ N : {{x, f (x), . . . , f k(x)} ⊂ L′ \L⇒ k < k0},(4)

∃k1 ∈ N : {{x, f (x), . . . , f k(x)} ⊂ N′ \N⇒ k < k1}.(5)

Indeed, if such a k0 does not exist, there is an x0 such that

{ f k(x0) : k ∈ N} ⊂ L′ \L,

hence
∅ 6= ω(x0)⊂ cl(L′ \L)⊂ L′.

On the other hand, since ω(x0) is invariant and L′ ⊂ N,

ω(x0)⊂ Inv(cl(L′ \L))⊂ Inv(cl(N \L)) = S⊂ int(N′ \L′)⊂ X \L′,

a contradiction. Similarly, if there is no such k1 then there exists an x1 such that

∅ 6= ω(x1)⊂ cl(N′ \N) = N′ \ intN.
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Since by (3),

ω(x1)⊂ Inv(cl(N′ \N))⊂ Inv(cl(N′ \L′)) = S⊂ int(N \L)⊂ intN,

again we get a contradiction. Let k0 and k1 satisfy (4) and (5), respectively. Let x ∈ N′ \L′.
If f k1

(N′,L′)([x]) 6= ∗ then f k(x) ∈ N \L′ for some k = 0, . . . ,k1 by the choice of k1 and thus

f m(x) ∈ N \L′ for each m = k, . . . ,k1 by (2). In particular, f k1(x) ∈ N \L′, hence we can
define a map

p : N′/L′→ N/L′

as f k1
(N′,L′) restricted in the codomain. It follows that p is continuous. Since N ⊂ N′,

(6) f (L′)∩N ⊂ L′.

Let y ∈ L′ \L. Then y ∈ N \L by (3) and f k0
(N,L)([y]) = ∗ by (6) and the choice of k0, hence

the map
q : N/L′→ N/L

given by

q([x]) :=

{
f k0(x) if x ∈ N \L′, { f (x), . . . , f k0(x)} ⊂ N \L,
∗ elsewhere

is a factorization of f k0
(N,L), hence it is continuous. The choice of p and q implies the upper-

right and lower-left triangles in the following diagram

N/L N′/L′

N/L N/L′ N′/L′

N/L N′/L′

��

f
k1
(N,L)

//i

ww

p

��

f
k1
(N′,L′)

��

f
k0
(N,L)

//i′

ww

q

//i′′

��

f
k0
(N′,L′)

//i

commute. Let [x] ∈ N/L. It follows by (2),

(7) p(i([x])) =

{
f k1(x) if {x, f (x), . . . , f k1(x)} ⊂ N \L′,
∗ elsewhere.

The right-hand side of (7) is equal to i′( f k1
(N/L)([x])) as a consequence of (6), hence we

get the commutativity of the upper trapezoid in the diagram. Moreover, if [x] ∈ N/L′ and
q([x]) ∈ N \L′ then necessarily x, f (x), . . . , f k0(x) ∈ N \L′ by (6). It follows

(8) i(q([x]) =

{
f k0(x) if {x, f (x), . . . , f k0(x)} ⊂ N \L′,
∗ elsewhere.

By (2), the right-hand side of (8) is equal to f k0
(N′,L′)(i

′′([x])), hence the lower trapezoid, and
therefore the whole diagram, commutes. Put n0 = k0 + k1 and g0 = q◦ p. For n≥ n0,

g := f n−n0
(N,L) ◦g0

is the required map. �
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3.3. Homology Conley index for discrete systems. Let R be a fixed normal, consistent
retractor. If (N,L) is an index pair for (S, f ) then CH(S, f ), the homology Conley index
of (S, f ) (over the retractor R), is defined as the conjugacy class of the automorphism
RH( f(N,L)). One can prove that every neighborhood of S contains an index pair for (S, f )
and the definition of the index is independent of the choice of a weak index pair. In fact,
index pairs in the definition of the index can be replaced by weak index pairs.

Proposition 3.3. If (N,L) is a weak index pair for (S, f ), then the conjugacy class of
RH( f(N,L)) is equal to CH(S, f ).

Proof. Indeed, let (N,L) be a weak index pair. Put

L′ := L∪ cl{x ∈ N : f (x) 6∈ N}.

Then (N,L′) is an index pair and the diagrams in Proposition 3.2 (for N = N′) commute
with n = 1. The result follows by Proposition 2.2. �

3.4. Isolated invariant sets for a continuous system and its discretizations. Let φ be a
continuous system on X and let h > 0. The following proposition is proved in [17]. We
provide the proof here for the sake of completeness.

Proposition 3.4. S is an isolated invariant set for φ if and only if it is an isolated invariant
set for φh. Moreover, if N is an isolating neighborhood of S for φh then N is also an
isolating neighborhood of S for φ .

Proof. If S is invariant for φ then it is obviously invariant for φh. Moreover, let N be an
isolating neighborhood of S with respect to φ . Then there exists a compact neighborhood
K of S such that φ(K, [−h,h]) ⊂ N. It follows K is an isolating neighborhood of S with
respect to φh. Conversely, let S be an isolated invariant set for φh and let N be its iso-
lating neighborhood. Then there exists ε > 0, such that φ(S, [−ε,ε]) ⊂ N. Since the set
φ(S, [−ε,ε]) is invariant with respect to φh,

φ(S, [−ε,ε]) = S,

which implies φ(S,R) = S. Since each invariant set for φ contained in N is an invariant set
for φh, N is an isolating neighborhood of S for φ . �

4. CONLEY INDEX OF POINCARÉ MAPS

4.1. Periodic non-autonomous equations. Let n be a positive integer. For A ⊂ R×Rn

and t ∈ R put
At := {x ∈ Rn : (t,x) ∈ A}.

Let Ω be an open subset of R×Rn. Assume f : Ω→ Rn is a time-dependent vector-field
such that the equation

(9) ẋ = f (t,x)

has the uniqueness property of the initial-value problem

(10) x(t0) = x0

associated to (9) (for example, f is smooth). Denote by

t 7→Φt0,t(x0)
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the solution of the problem (9),(10). Let T > 0. In the sequel we assume Ω and f are
T -periodic with respect to the first variable, i.e.,

Ωt+T = Ωt ,

f (t +T,x) = f (t,x)

for t ∈ R and (t,x) ∈Ω. It follows, in particular, that

Φt0,t = Φt0+T,t+T .

We call

P := Φ0,T

the Poincaré map for the problem (9),(10). Its domain is equal to the set

{x ∈Ω0 : Φ0,t(x) is defined for all t ∈ [0,T ]}.

Let [t] denote the modulo-T class of t ∈ R in R/TZ and let Σ denote the quotient space of
Ω obtained by the identification of t×Ωt with (t +T )×Ωt . Hence,

Σ =
⋃

t∈[0,T )
[t]×Ωt ⊂ R/TZ×Rn.

Thus, the equation (9) induces two continuous systems φ on Σ and ψ on Ω given by

φt([τ],x) = ([τ + t],Φτ,τ+t(x)),

ψt(τ,x) = (τ + t,Φτ,τ+t(x)).

Proposition 4.1. Let S⊂ Σ. The following conditions are equivalent:

(i) S is isolated invariant for φ ,
(ii) S is isolated invariant for φh, for every h > 0,

(iii) S is isolated invariant for φh, for some h > 0,
(iv) S0 is isolated invariant for the Poincaré map P and St = Φ0,t(S0) for each t ∈

(0,T ).

Proof. The equivalence of (i), (ii), and (iii) follows by Proposition 3.4. Let (ii) hold and
let N be an isolating neighborhood of S in φT . It follows N0 is an isolating neighborhood
of S0 with respect to P. Moreover, let t ∈ [0,T ). Then Φ0,t(S0)⊂ St and Φt,−t(St)⊂ S0 by
the invariance of S with respect to φ (since (ii) implies (i)), hence Φ0,t(S0) = St and (iv) is
satisfied. Finally, assume (iv) holds. For every t ∈ (0,T ), the set St is isolated invariant for
Φt,t+T since that map is conjugated to P. For t ∈ [0,T ) let Nt be an isolating neighborhood
of St in Φt,t+T . Actually, for each t ∈ [0,T ) there exists an εt > 0 such that Nt is also an
isolating neighborhood of Sτ provided |τ− t|< εt . Let t1, . . . , tk ∈ [0,T ) be such that

[0,T ]⊂
k⋃

i=1

(ti− εti , ti + εti).

Then

N :=
k⋃

i=1

⋃
τ∈(ti−εti ,ti+εti )

[τ]×Nti

is an isolating neighborhood of S in φT . Hence, (iii) follows. �
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4.2. Contiguous cycles. For B⊂ R/TZ×Rn define

B̃ := {(t,x) ∈ R×Rn : ([t],x) ∈ B}.

By abuse of notation, for t ∈ R we write Bt instead of B̃t .
Let (N,L) be a pair of subsets of Σ. Assume a,b ∈ R, a ≤ b. Let u ∈ Z(Na,La) and

v ∈ Z(Nb,Lb). The pair (u,v) is called a pair of contiguous cycles over [a,b] if there exist
chains w ∈ S(Ñ∩ ([a,b]×Rn)) and z ∈ S(L̃∩ ([a,b]×Rn)) such that

∂w = a×u−b× v+ z,

where a×u ∈ Z(a×Na,a×La) and b×v ∈ Z(b×Nb,b×Lb) correspond to u and v via the
embeddings x 7→ (a,x) and x 7→ (b,x), respectively.

Let h > 0. A pair of contiguous cycles (u,v) is called h-movable provided there exist w
and z as above such that

ψ(|w|, [0,h])⊂ Ñ, ψ(|z|, [0,h])⊂ L̃.

Lemma 4.2. If (u,v) is a pair of h-movable contiguous cycles over [a,b], then

ψ(|a×u|, [0,h])⊂ Ñ, ψ(|b× v|, [0,h])⊂ Ñ.

Proof.

ψ(|a×u−b× v|, [0,h]) = ψ(|∂w− z|, [0,h])⊂ ψ(|w|, [0,h])∪ψ(|z|, [0,h])⊂ Ñ.

Since |a×u|∩ |b× v|=∅, the result follows. �

Lemma 4.3. If (u,v) is a pair of contiguous cycles over [a,b] and (v,w) is a pair of con-
tiguous cycles over [b,c] then (u,w) is a pair of contiguous cycles over [a,c]. Moreover, if
(u,v) and (v,w) are h-movable, then (u,w) is also h-movable. �

Lemma 4.4. If (ui,vi) are pairs of contiguous cycles over [a,b] and λi ∈ F, i = 1, . . . ,k,
then

(
∑

k
i=1 λiui,∑

k
i=1 λivi

)
is a pair of contiguous cycles over [a,b]. Moreover, this pair is

h-movable provided all (ui,vi) are h-movable. �

4.3. The main theorem. Let h > 0 and let (N,L) be a weak index pair for φh. Put

S := Inv(cl(N \L),φh).

By Proposition 4.1, S0 is an isolated invariant set for the Poincaré map P. The main theo-
retical result of the present paper is

Theorem 4.5. Let T/h ∈Q. Assume N0 and L0 are ENR’s,

k := dimH(N0,L0),

A = [ai j] is a graded (k× k)-matrix over F, and(
u j,

k

∑
i=1

ai jui

)
, j = 1, . . . ,k,

are h-movable pairs of contiguous cycles over [0,T ] such that {[u j](N0,L0) : j = 1, . . . ,k} is
a basis of H(N0,L0). Then CH(S0,P) is equal to the conjugacy class of RA.

A proof is postponed to the next section. An example application of Theorem 4.5 is the
following corollary, which follows from [30, Lemma 5.2] (see also [16]).

Corollary 4.6. Under the assumptions of Theorem 4.5, if

Λ(A) 6= 0,

then the equation (9) has a T -periodic solution.
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In Theorem 4.5, the assumption on h-movability is essential. Indeed, consider the equa-
tion

ẋ = 1

on R. We treat it as T -periodic for some T > 0. Let h = 2 and for each t ∈ R let

Nt := [0,1]∪ [2,6], Lt := [4,6].

It follows that (N,L) is an index pair for φh. Obviously, the invariant part of N is empty,
hence the Conley index of the Poincaré map is trivial. On the other hand, let u be equal to
the singular 0-dimensional simplex 1 in the interval [0,1]. Then u is a cycle which is equal
to its homology class and it is a generator of H(N0,L0) ∼= F. Moreover, (u,u) is a pair of
contiguous cycles. Indeed, the corresponding chains w and z can be given as w equal to
the 1-dimensional singular simplex [0,T ]×1 in [0,T ]× [0,1] and z = 0. Note however, the
pair (u,u) is not h-movable. Since A = (1), its conjugacy class is nontrivial.

5. PROOF OF THEOREM 4.5

5.1. Reduction to global systems. Let g : R/TZ×Rn→ [0,1] be a smooth function such
that for some compact set K ⊂ Σ satisfying N ⊂ intK,

R/TZ×Rn \ intK ⊂ g−1(0), N ⊂ g−1(1),

Put g̃(t,x) := g([t],x) for (t,x) ∈ R×Rn. Replacing (9) by

(11) ẋ = g̃(t,x) f (t,x)

we get global systems φ ′ on R/TZ×Rn and ψ ′ on R×Rn corresponding to φ and ψ ,
respectively. Moreover, the set S remains isolated for φ ′, (N,L) is an index pair for (S,φ ′),
the h-movability property (c.f. Subsection 4.2) is preserved if ψ is replaced by ψ ′. It is
also clear that

CH(S0,P′) = CH(S0,P),

where P′ denotes the Poincaré map associated to (11). Hence, in the sequel we are able to
assume

Σ = R/TZ×Rn,

Ω = R×Rn,

and the equation (9) generates global systems φ and ψ .

5.2. Auxiliary index pairs. In order to find the Conley index of (S0,P) one should find a
weak index pair for it. To this aim we define several auxiliary sets. Put

N′ :=
⋃
{σ ⊂ N : σ is a segment of length h},

L′ :=
⋃
{τ ⊂ N : τ is a segment starting at a point in L},

N∗ := N′∪L′.

It follows immediately that

L⊂ L′ ⊂ N∗ ⊂ N.

Lemma 5.1. The sets N′, L′ and N∗ are compact.
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Proof. We only show compactness of L′ here, the proof for N′ is similar. Using that L is
positive invariant under φh, one can see that

L′ =
⋃
{τ ⊂ N : τ is a segment with length in [0,h] starting at a point in L }.

Let {xn} be a sequence in L′. Then there are yn ∈ L and tn ∈ [0,h] such that φ(yn, tn) = xn
and φ(yn, [0, tn])⊂N. We choose an increasing sequence of natural numbers {n(k) | k ∈N}
such that yn(k)→ y∗ ∈ L and tn(k)→ t∗ ∈ [0,h]. Since φ(yn, [0, tn])⊂ N, also φ(y∗, [0, t∗])⊂
N and therefore xn(k)→ φ(y∗, t∗) ∈ L′ for k→ ∞. �

Lemma 5.2. If x ∈ N′ and φ(x, [0,ε)) 6⊂ N for every ε > 0 then x ∈ L.

Proof. There is a point y∈N such that φ(y, [0,h])⊂N and x = φh(y). Then φh(φεn(y)) /∈N
for some sequence εn > 0, εn→ 0. By (P3W), x ∈ L. �

Lemma 5.3.
(a) If x ∈ N′, φh(x) ∈ N and φ(x, [0,h]) 6⊂ N, then φh(x) ∈ L′.
(b) If x ∈ L′ and φh(x) ∈ N, then φh(x) ∈ L′.

Proof. In order to prove (a), let x∈N′ and φh(x)∈N. By definition of N′, there are t ∈ [0,h]
and y ∈ N such that φ(y, [0,h])⊂ N and x = φt(y). It follows

φ(x, [0,h− t])⊂ N.

There is a number s such that

(12) 0 < s≤ h, φ(x, [s,h])⊂ N, ∃0 < εn→ 0: φs−εn(x) /∈ N.

Then
h < s+ t ≤ 2h,

since if φ(x, [h− t,h]) ⊂ N, then φ(x, [0,h]) ⊂ N, which contradicts the assumption. It
follows φs+t−εn−h(y) ∈ N, hence (P3W) and (12) imply φs(x) ∈ L and therefore φh(x) ∈ L′.

For the proof of (b), let x ∈ L′ and φh(x) ∈ N. Let x = φt(y), y ∈ L, and φ(y, [0, t]) ⊂
N. By (P2D), one can assume t ∈ (0,h). If φ(x, [0,h]) ⊂ N then φ(y, [0, t + h]) ⊂ N and
φh(x) ∈ L′. If not, there is an s satisfying (12). Assume first

h < s+ t.

Then φs+t−h−εn(y) ∈ φ(y,(0, t])⊂ N, hence φs(x) ∈ L and φh(x) ∈ L′. Finally, assume

s+ t ≤ h.

Then φh(y) ∈ φ(x, [s,h])⊂ N, which implies φh(y) ∈ L by (P2D). Thus

φh(x, [h− t,h])⊂ L′

and (b) follows. �

Lemma 5.4. (N∗,L) is a weak index pair for (S,φh). Moreover,

(13) φh(N∗)∩N ⊂ N∗.

Proof. At first we prove (13). Since φ(x, [0,h]) ⊂ N implies trivially x,φh(x) ∈ N′, the
claim follows immediately by Lemma 5.3. In order to prove (P1) choose U , a neighbor-
hood of S such that φ(U, [0,h]) ⊂ int(N \ L). It follows U ⊂ N∗, hence S ⊂ int(N∗ \ L).
Therefore

S⊂ Inv(cl(N∗ \L))⊂ Inv(cl(N \L)) = S,
hence (P1) is proved. Since N∗ ⊂ N and (N,L) is a weak index pair, the condition (P2D)
is obvious. For a proof of (P3W) assume xn ∈ N∗, xn→ x0, φh(x0) ∈ N∗, and φh(xn) /∈ N∗.



16 MARIAN MROZEK, ROMAN SRZEDNICKI, AND FRANK WEILANDT

It follows by (13), φh(xn) /∈ N. Then φh(x0) ∈ L because (N,L) is a weak index pair, hence
the proof is finished. �

Lemma 5.5. (N∗,L′) is an index pair for (S,φ).

Proof. By Proposition 3.4 and Lemma 5.4, cl(N∗ \ L) is an isolating neighborhood of S
for φ . Obviously S∩ L′ = ∅, hence (P1). The condition (P2C) follows directly by the
definition of L′. In order to prove (P3C), let 0≤ t < ∞ be such that

φ(x, [0, t])⊂ N∗, φ(x, [0, t + ε]) 6⊂ N∗

for every ε > 0. One can assume x /∈ L′, hence x ∈ N′. It follows φt(x) ∈ N′ and thus
φt(x) ∈ L by Lemma 5.2. �

Lemma 5.6 ([27, Lemma 5.3]). There exists a continuous function α : N∗ → [0,1] such
that

α(x) = 1⇐⇒ φ(x, [0,∞))⊂ N∗ and ω(x,φ)⊂ S,

α(x) = 0⇐⇒ x ∈ L′,

t > 0, 0 < α(x)< 1, φ(x, [0, t])⊂ N∗⇒ α(φt(x))< α(x). �

Let α be given in Lemma 5.6 and let 0 < c < 1 be such that

(14) α(x)≥ c ⇒ φ(x, [0,max{h,T}])⊂ N∗.

Put
L∗ := α

−1([0,c]).

Lemma 5.7 ([27, Remark 5.4]). (N∗,L∗) is a regular index pair for (S,φ). �

Lemma 5.8. (N∗,L∗) is an index pair for (S,φh).

Proof. The condition (P1) is obvious and (P3D) follows by (14). In order to prove (P2D)
let x ∈ L∗ and φh(x) ∈ N∗. If φ(x, [0,h]) ⊂ N, then φ(x, [0,h]) ⊂ N′ ⊂ N∗ and α(φh(x)) ≤
α(x)≤ c, which implies the result. On the other hand, if φ(x, [0,h]) 6⊂N, then φh(x)∈ L′ ⊂
L∗ follows directly from Lemma 5.3. �

Define ρ : Ñ∗∩ ([0,T ]×Rn)→ N∗0/L∗0 by the formula

ρ(t,x) :=

{
Φt,T (x) if Φt,s(x) ∈ N∗s \L∗s for every s ∈ [t,T ],
∗ otherwise.

Lemma 5.9. The map ρ is continuous.

Proof. Put σ∗ : Ñ∗∩ ([0,T ]×Rn)→ [0,∞],

σ
∗(t,x) := {

sup{τ ∈ (0,∞) : Φt,s(x) ∈ N∗s \L∗s ∀s ∈ [t, t + τ]} if x ∈ N∗t \L∗t ,
0 otherwise.

The map σ∗ is continuous by Lemma 5.7. Hence, in particular, if σ(t,x) = T − t, then
Φt,T (x) ∈ L∗T . Since

ρ(t,x) =

{
Φt,T (x) if σ∗(t,x)> T − t,
∗ otherwise,

the result follows. �
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Put
N∗∗ := α

−1([c,1]), L∗∗ := α
−1(c).

Lemma 5.10. (N∗∗,L∗∗) is a weak index pair for (S,φτ) for every τ ∈ (0,max{h,T}].

Proof. By the properties of the function α , the set S is maximal invariant with respect to
φτ in N∗∗, hence (P1) follows. By (14), if x ∈ L∗∗, then α(φτ(x)) < c, hence φτ(x) /∈ N∗∗

and (P2D) follows. Finally, if xn ∈ N∗∗, φτ(xn) /∈ N∗∗, xn → x0 and φτ(x0) ∈ N∗∗, then
α(φτ(x0)) = c and (P3W) follows. �

By the definition of quotient space,

(15) N∗∗/L∗∗ = N∗/L∗.

It follows, in particular,

(16) (φh)(N∗,L∗) = (φh)(N∗∗,L∗∗).

Also by (15) and Lemma 5.10 we can formulate the following result.

Lemma 5.11. If x ∈ N∗ and 0 < τ ≤max{h,T}, then

(φτ)(N∗∗,L∗∗)([x]) =

{
φτ(x) if φt(x) ∈ N∗ \L∗ for every t ∈ [0,τ],
∗ elsewhere.

Proof. Let x ∈ N∗ \L∗. By (14),
φt(x) ∈ N∗

for each t ∈ [0,τ]. If φt(x) /∈ N∗ \L∗ for some t ∈ (0,τ), then there exists 0 < s < t such
that

α(φs(x)) = c,
hence α(φτ(x))< c and (φτ)(N∗∗,L∗∗)([x]) = ∗. �

Corollary 5.12. (N∗∗0 ,L∗∗0 ) is a weak index pair for (S0,P) and for x ∈ N∗0 ,

P(N∗∗0 ,L∗∗0 )([x]) =

{
P(x) if Φ0,t(x) ∈ N∗t \L∗t for every t ∈ [0,T ],
∗ elsewhere. �

By Proposition 3.3 and Corollary 5.12, in order to prove Theorem 4.5 one should verify
the equality of the conjugacy classes of RA and RH(P(N∗∗0 ,L∗∗0 )).

5.3. Endomorphisms induced by the matrix A. Let

π : (N0,L0)→ (N0/L0,∗), π
∗ : (N∗0 ,L0)→ (N∗0/L0,∗)

be the quotient maps and let

I : (N∗0 ,L0) ↪→ (N0,L0), ι : N∗0/L0 ↪→ N0/L0

be the inclusion maps. Since (N0,L0) is a pair of compact ENRs, Proposition 2.3 implies
that H(π) is an isomorphism. By Lemma 4.2, ui ∈ Z(N∗0 ,L0) for each i. Since

H(I)[ui](N∗0 ,L0) = [ui](N0,L0),

by the commutativity of the diagram

H(N∗0 ,L0) H(N0,L0)

H(N∗0/L0,∗) H(N0/L0,∗),
��

H(π∗)

//
H(I)

��

∼= H(π)

//
H(ι)
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the vectors
ui := H(π∗)[ui](N∗0 ,L0)

are linearly independent in H(N∗0/L0,∗). Put

V := Lin{ui : i = 1, . . . ,k} ⊂ H(N∗0/L0,∗)

and denote
u := (u1, . . . ,uk).

It is an ordered basis of V . By definition of Au, it is represented by the matrix A. Con-
sidering A as an endomorphism with the same name (by left multiplication), we have the
conjugacy

(17) A∼= Au.

Let
κ : N∗0/L0→ N∗0/L∗0

be induced by the inclusion (N∗0 ,L0)⊂ (N∗0 ,L
∗
0).

Lemma 5.13. The diagram

V H(N∗0/L∗0,∗)

V H(N∗0/L∗0,∗)

//
H(κ)|V

��

Au

��

H(P(N∗∗0 ,L∗∗0 ))

//
H(κ)|V

commutes.

Proof. Fix j = 1, . . . ,k. Let w j and z j be chains from the definition of h-movability of the
contiguous pair of cycles

(
u j,∑

k
i=1 ai jui

)
over [0,T ]. It follows, in particular,

w j ∈ S(Ñ∗∩ [0,T ]×Rn).

Let ρ be given in Lemma 5.9. Then S(ρ)z j ∈ S(∗) and for every x ∈ N∗0 ,

ρ(T,x) = κ ◦π
∗(x),

ρ(0,x) = P(N∗,∗0 ,L∗∗0 )(κ ◦π
∗(x))

by Corollary 5.12. Note that u j = [S(π∗)u j] ∈V . The computation on singular chains

S(P(N∗,∗0 ,L∗∗0 ))S(κ)S(π
∗)u j−∑

i
ai jS(κ)S(π∗)ui = S(ρ)(0×u j)−S(ρ)

(
T ×∑

i
ai jui

)
=

∂S(ρ)w j−S(ρ)z j ∈ ∂S(N∗0/L∗0)+S(∗)

implies the result. �

5.4. Endomorphisms induced by index maps. In the sequel we use the following nota-
tion. Let (N,L) be a weak index pair for (S,φh). For t ∈ R define

Ψ
(N,L)
t,t+h : Nt/Lt → Nt+h/Lt+h

induced by the restrictions of the corresponding index map, i.e., for x ∈ Nt ,

Ψ
(N,L)
t,t+h ([x]) :=

{
Φt,t+h(x) if x ∈ Nt \Lt , Φt,t+h(x) ∈ Nt+h \Lt+h,

∗ elsewhere.
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The map Ψ
(N,L)
t,t+h is continuous. Since T/h is rational,

(18) ph = qT

for some positive integers p and q. Define

Ψ(N,L) := Ψ
(N,L)
(p−1)h,ph ◦ . . .◦Ψ

(N,L)
0,h : N0/L0→ N0/L0.

Recall that (N∗,L) and (N∗,L∗) are weak index pairs for (S,φh) by Lemmas 5.4 and 5.8.
As a consequence of (16) and Lemma 5.11 we get

(19) Ψ
(N∗,L∗)
t,t+h ([x]) =

{
Φt,t+h(x) if Φt,t+s(x) ∈ N∗t+s \L∗t+s for every s ∈ [0,h],
∗ elsewhere

and by Proposition 3.2 the diagram

(20)

N∗0/L0 N∗0/L∗0

N∗0/L0 N∗0/L∗0
��

Ψ(N∗ ,L)

//κ

��

Ψ(N∗ ,L∗)

//κ

commutes.

Lemma 5.14. For every v ∈V ,

H(Ψ(N∗,L))v = Aq
uv.

Proof. Denote the elements of Aq by aq
i j; i.e., Aq = [aq

i j]i, j=1,...,k. For j = 1, . . . ,k put

v j :=
k

∑
i=1

aq
i jui.

By Lemmas 4.3 and 4.4, each (u j,v j) is an h-movable pair of contiguous cycles over
[0,qT ]. Fix j = 1, . . . ,k. Let w j and z j be chains corresponding to (u j,v j) in the definition
of h-movability, hence

∂w j = 0×u j−T × v j + z j,

∀(t,x) ∈ |w j| ∀s ∈ [0,h] : Φt,t+s(x) ∈ N∗t+s,

∀(t,x) ∈ |z j| ∀s ∈ [0,h] : Φt,t+s(x) ∈ Lt+s.

Define a map
Q : |w j| → N∗0/L0,

as follows. Let (t,x) ∈ |w j|. By (18) we can assume t = rh− s for some r = 1, . . . , p and
s ∈ [0,h]. Put

Q(t,x) :=

{
Ψ

(N∗,L)
(p−1)h,ph ◦ . . .◦Ψ

(N∗,L)
rh,(r+1)h([Φrh−s,rh(x)]) if r = 1, . . . , p−1,

[Φph−s,ph(x)] if r = p.

The map Q is well-defined. Indeed, Φrh−s,rh(x) ∈ N∗rh by h-movability, and if s = h, then

Ψ
(N∗,L)
(r−1)h,rh([x]) = [Φ(r−1)h,rh(x)]
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by definition. Q is continuous since its restriction to each set |w j|∩ ([(r−1)h,rh]×Rn) is
continuous. By definition,

Q(0,x) = Ψ(N∗,L)(π
∗(x)),

Q(qT,x) = π
∗(x).

Moreover, by h-movability,
Q(|z j|) = ∗.

It follows that

S(Ψ(N∗,L))S(π∗)u j−∑
i

aq
i jS(π

∗)ui = S(Q)(0×u j)−S(Q)(qT × v j) =

∂S(Q)w j +S(Q)z j ∈ ∂S(N∗0/L0)+S(∗),

which implies the result. �

Lemma 5.15.
Ψ(N∗,L∗) = Pq

(N∗∗0 ,L∗∗0 )
.

Proof. Let x ∈ N∗0 . By (19),

Ψ(N∗,L∗)([x]) =

{
Φ0,ph(x) if Φ0,t(x) ∈ N∗t \L∗t for every t ∈ [0,qT ],
∗ elsewhere,

but the right-hand side is equal to Pq
(N∗∗,L∗∗)([x]) by (18) and Corollary 5.12. �

By Proposition 3.2 and (13), there exist k,k∗ ∈ N and continuous maps g and g∗ such
that the following diagrams

N∗/L N/L

N∗/L N/L,
��

(φh)
kp
(N∗ ,L)

//

��

(φh)
kp
(N,L)

ww

g

//

N∗/L N∗/L∗

N∗/L N∗/L∗,
��

(φh)
k∗ p
(N∗ ,L)

//

��

(φh)
k∗ p
(N∗ ,L∗)

ww

g∗

//

in which the horizontal arrows are induced by inclusions, commute. It follows by commu-
tativity that the restrictions of g and g∗ to the fiber over zero in R/TZ induce continuous
maps

g0 : N0/L0→ N∗0/L0, g∗0 : N∗0/L∗0→ N∗0/L0

such that the diagrams

N∗0/L0 N0/L0

N∗0/L0 N0/L0,
��

Ψk
(N∗ ,L)

//ι

��

Ψk
(N,L)

ww

g0

//ι

(21)

N∗0/L0 N∗0/L∗0

N∗0/L0 N∗0/L∗0
��

Ψk∗
(N∗ ,L)

//κ

��

Ψk∗
(N∗ ,L∗)

ww

g∗0

//κ

(22)

commute.
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Lemma 5.16.
H(Ψk

(N∗,L))(H(N∗0/L0,∗))⊂V.

Proof. Let w ∈H(N∗0/L0,∗). Since H(ι)|V is an isomorphism, there exists v ∈V such that

H(ι)w = H(ι)v.

The above equation, the commutativity of (21), and Lemma 5.14 imply

H(Ψk
(N∗,L))w = H(Ψk

(N∗,L))v = Akq
u v ∈V,

hence the result. �

By Lemma 5.16 define

Γ : H(N∗0/L∗0,∗) 3 w 7→ H(Ψk
(N∗,L))H(g∗0)w ∈V.

Lemma 5.17. The diagram

V H(N∗0/L∗0,∗)

V H(N∗0/L∗0,∗)

//
H(κ)|V

��

A(k+k∗)q
u

��

H(P(N∗∗0 ,L∗∗0 ))
(k+k∗)q

ww

Γ

//
H(κ)|V

commutes.

Proof. The commutativity of (20) and (22), and Lemma 5.16 imply the diagram

V H(N∗0/L∗0,∗)

H(N∗0/L0,∗) H(N∗0/L∗0,∗)

V H(N∗0/L∗0,∗)

��

H(Ψ(N∗ ,L))
k∗ |V

//
H(κ)|V

��

H(Ψ(N∗ ,L∗))
k∗

ww

H(g∗0)

��

H(Ψ(N∗ ,L))
k

//
H(κ)

��

H(Ψ(N∗ ,L∗))
k

//
H(κ)|V

commutes. The conclusion is a consequence of Lemmas 5.14 and 5.15. �

5.5. Final step of the proof. By Proposition 2.2, the equation (17), and Lemmas 5.13 and
5.17,

RA∼= RAu ∼= RH(P(N∗∗0 ,L∗∗0 )).

The conjugacy class of the latter is equal to CH(S0,P) by Corollary 5.12, hence Theo-
rem 4.5 is proved.

6. RIGOROUS NUMERICS OF DYNAMICAL SYSTEMS

In this section and the following one, we present the algorithm used to check the pre-
requisites of Theorem 4.5. The algorithm is based on the rigorous construction of a weak
index pair (N,L) of φh as in [20]. The index pair is a pair of cubical sets [11]. To facilitate
efficient computability of homology groups, in the algorithms we replace singular homol-
ogy by cubical homology as defined in [11]. We still can use Theorem 4.5 because singular
and cubical homology are isomorphic on cubical sets.
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The algorithm constructs 1-chains z,v and a 2-chain w as linear combinations of elemen-
tary cubes. In the course of their construction, the algorithm has to ensure the movability
condition. We first describe how we use cubes to combinatorially model a dynamical sys-
tem. For more details about these methods, we refer to [11].

6.1. Discretizing the space. We use the following unit cubes filling R3 as a combinatorial
model for the quotient space Σ = R/TZ×R2.

Definition 6.1. An elementary interval I is an interval of the form I = [i] := [i, i] or I =
[i, i+ 1] for an i ∈ Z. An elementary cube is a product of intervals Q = I1× I2× I3 ⊂ R3,
where each Ii is an elementary interval. The dimension of Q is the number of intervals of
the form [i, i+ 1] in this product. The word cube always refers to an elementary cube in
this article. When A is a set of elementary cubes, let |A| =

⋃
Q∈A Q ⊂ R3. If A is finite,

we call |A| a cubical set.
A k-dimensional elementary cube is called a k-cube. We often use special names de-

pending on dimension: a vertex is a 0-cube, an edge is a 1-cube, a square is a 2-cube, and
a full cube is a 3-cube. For a set A of cubes, let Ak := {Q ∈ A | dimQ = k}.

Given a subdivision parameter m ≥ 1, the extended phase space Σ = R/TZ×R2 is
covered as follows. Let

X = {[i, i+1]× [ j, j+1]× [k,k+1] | i ∈ {0,1, . . . ,2m−1}, j,k ∈ Z} .
To cover a bounded region, we choose a,b > 0 and define

α : |X | →Ω = R×R2,

(x1,x2,x3) 7→
(

T · x1

2m , a
( x2

2m−1 −1
)
, b
( x3

2m−1 −1
))

.

Let q : Ω→ Σ be the quotient map, and let p = q ◦α . Note that α([0,2m]3) = [0,T ]×
[−a,a]× [−b,b] and p(|X |) = Σ.

Definition 6.2. For a set A of cubes, let

JAK := p(|A|) =
⋃

Q∈A
p(Q)⊂ Σ

be its geometric realization.

Observe that JA∪BK = JAK∪ JBK and JA∩BK⊂ JAK∩ JBK for any setsA,B of cubes.

6.2. Discretizing the generator of the dynamical system.

Definition 6.3. For a set A of cubes, a multivalued combinatorial map F on A is a map
from A to its power set. This is written as F : A⇒A.

Definition 6.4. Let I ⊂ Z be an interval of integers containing 0. For a combinatorial
multivalued map F : A⇒A, a solution through Q ∈ A is a map Γ : I→A such that

(i) Γ(0) = Q, and
(ii) Γ(k+1) ∈ F(Γ(k)) for all k such that k,k+1 ∈ I.

Definition 6.5. For a setM⊂A, let
(i) Inv(M,F) = {Q ∈M | there is a solution Z→M through Q},

(ii) Inv±(M,F) = {Q ∈M | there is a solution Z±→M through Q}.

Definition 6.6. Given a continuous map f : Σ→ Σ, the map F : X ⇒X is a combinatorial
enclosure of f if for every Q ∈ X : f (p(Q))⊂ intJF(Q)K.
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We are interested in the numerical study of differential equations of the form

ż = f (t,z)

with z ∈ C ∼= R2 and f (t,z) = f (t + T,z) for every t ∈ R. This yields flows ψ on Ω =
R×R2 and φ on Σ = R/TZ×R2 as described in Section 4. We assume that the flows are
defined for all times t ∈ R using the argument from Subsection 5.1. The time-h maps ψh
on Ω = R×R2 and φh on Σ = R/TZ×R2 describe discrete dynamical systems.

Given a product V ⊂Ω of closed intervals (an interval vector) and an interval J⊂ [0,∞),
we use the software library CAPD [36] to find an interval vector V ′⊂Ω such that ψ(V,J)⊂
int(V ′). We use higher-order Taylor methods, but the overall approach of this paper would
also work with other methods. The algorithms used by us are described in [22], [34], and
[35].

Given an elementary cube Q (not necessarily full) with Q ⊂ |X |, α(Q) is an interval
vector in Ω. Given a time interval J ⊂ [0,∞), the aforementioned methods for rigorous
numerics compute an interval vector E ⊂ Ω such that ψ(α(Q),J) ⊂ int(E). Then we
represent q(E)⊂ Σ as a set of cubes in X as follows:

Φ(Q,J) := {Q′ ∈ X | p(Q′)∩q(E) 6=∅} ⊂ X ,

which could be infinite because E does not need to be bounded. Then φ(p(Q),J) ⊂
intJΦ(Q,J)K. When we denote the restriction of Φ(−,J) to full cubes in X by F J , then
F J : X ⇒ X is a combinatorial enclosure of φt for every t ∈ J. When checking the con-
ditions of Theorem 4.5, we use the intervals J = [h,h], having length zero, and J = [0,h].
Our algorithm operates on this finite set of full cubes:

K := {[i, i+1]× [ j, j+1]× [k,k+1] | i, j,k ∈ {0,1, . . . ,2m−1}} ⊂ X .

The dynamics of φ(.,J) which we are interested in is represented numerically by the func-
tion COVER, defined for a cube Q of arbitrary dimension :

COVER(Q,J) := Φ(Q,J)∩K.

Definition 6.7. For a set A⊂K of full cubes, let

WRAP(A) := {Q ∈ K | Q∩|A| 6=∅} ,

where we consider the right edge at [2m] glued to the left edge at [0].

Our algorithm does not require more knowledge about the behavior of the dynamical
system than the outputs of COVER.

6.3. Constructing the weak index pair. We define the following subset of K:

M := {[i, i+1]× [ j, j+1]× [k,k+1] | 0≤ i < 2m, j,k ∈ {1, . . . ,2m−2}} .

The geometric realization JMK is our candidate for an isolating neighborhood of φh. The
property JMK ⊂ intJKK is crucial for the proof of Proposition 7.5. For a combinatorial
enclosure F : X ⇒ X of φh, we let its restriction toM be defined by

FM : M⇒M, Q 7→ F(Q)∩M= COVER(Q, [h,h])∩M.

We use the approach described in [20] to construct a weak index pair for φh. The algo-
rithm constructs sets of full cubesN 3 = Inv−(M,F)= Inv−(M,FM) and Inv+(M,F)=
Inv+(M,FM) (cf. Definition 6.5). Note that Inv(JMK,φh) ⊂ JInv(M,F)K in the phase
space Σ. Therefore, if

WRAP
(
Inv−(M,F)∩ Inv+(M,F)

)
⊂M,
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FIGURE 1. A simple example where Σ is just R/TZ×R1 and assuming
the flow φ is induced by a vector field f : R×R1→ R1 with f (t,0) = 0
and f (t,x) · x > 0 for x 6= 0. The invariant set S of φ is the periodic orbit
at x = 0. In the left figure, the blue set is JLK⊂ Σ =R/TZ×R1, the blue
set in the right figure is the cubical set |L|; similarly for N , the union of
the red and blue cubical sets. The right figure shows cubical chains with
∂w = u− v+ z+− z− (in the notation of Section 7).

then JMK is an isolating neighborhood for φh. In this case, we let L3 = Inv−(M,F) \
Inv+(M,F). The pair (N 3,L3) of sets of full cubes is called a combinatorial index pair
and (JN 3K,JL3K) is a weak index pair for φh, as shown in [20].

Remark 6.8. After finding the weak index pair, it is also possible to replaceM by a set
M′ ⊂M such that WRAP(Inv(M,F)) ⊂M′. Then Inv(M′,F) = Inv(M,F). Using
M′, we can reduce the thickness of the exit set L3.

7. ALGORITHMS

In this section we present the algorithm which constructs a 1-chain v for each given
homology generator u such that (u,v) is an h-movable pair of contiguous cycles. The final
step to apply Theorem 4.5 then consists of finding a 1-chain homologous to v which is a
linear combination of the generators of H1(N0,L0).

Definition 7.1. For an elementary cube Q = I1× I2× I3, let πi(Q) := Ii. Removing the first
factor is denoted by π̂1, i.e.,

π̂1(Q) := π2(Q)×π3(Q)⊂ R2,

We use the definitions of cubical chains and their boundaries from [11], Section 2.2.
Here we use the following notations. Let F be a field and let A be a finite set of cubes in
R3.

Definition 7.2.
(i) Let Ck(A) :=

{
∑i αiQi | αi ∈ F and Qi ∈ Ak} .

(ii) Let B ⊂A. Define Ck(A,B) := {c ∈Ck(A) | ∂c ∈Ck−1(B)} .
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(iii) For a chain c = ∑i αiQi ∈Ck(A) with Qi 6= Q j whenever i 6= j, let

c(Q) :=

{
αi if Q = Qi for some i,
0 otherwise.

Definition 7.3.
(i) For j,k ∈ Z with j ≤ k, let

A[ j,k] := {Q ∈ A | π1(Q)⊂ [ j,k]}.
Similarly, letA[ j,k) :=A[ j,k] \A[k],A( j,k] :=A[ j,k] \A[ j] andA( j,k) :=A[ j,k) \A[ j].

(ii) For a chain c = ∑i αiQi ∈ Ck(A), let B = {Q ∈ Ak | c(Q) 6= 0}. Let I be of the
form [ j,k], [ j,k), ( j,k] or ( j,k). Then define cI := ∑Q∈BI c(Q)Q ∈Ck(BI).

(iii) Define π̂1(c) := ∑i αiπ̂1(Q).

Definition 7.4.
(i) For a chain c ∈Ck(A), let its support be |c| :=

⋃
{Q | c(Q) 6= 0}.

(ii) For c ∈Ck(A), let JcK := p(|c|).
(iii) We call a 1-chain c∈C1(A) a path if there are x,y∈A0,x 6= y, such that ∂c= x−y.

We assume that the weak index pair (JN 3K,JL3K) discussed in the previous section
was successfully constructed. Now let N be the smallest set of cubes which contains all
boundary cubes of its elements and has the constructed N 3 as a subset. Our notations are
then consistent with Definition 6.1. Let N = JN 3K = JN K ⊂ Σ. In an analogous way, we
define L and L. Note that in general we only have a subspace relation JN [0]K ⊂ [0]×N0,
where [0]∈R/TZ on the right hand side and N0 ⊂R2 using notations from Subsection 4.1.
In order to compute H∗(N0,L0) correctly, we add sets of cubes

{[0]× I2× I3 | [2m]× I2× I3 ∈N} and {[2m]× I2× I3 | [0]× I2× I3 ∈N}
to N . Then JN [0]K = JN [2m]K = [0]×N0 = [T ]×NT and still JN K = N and JLK = L.

Calculating the Conley index in 0-th homology can be done as follows. A genera-
tor [u] ∈ H0(N0,L0) can be represented by a vertex x in a component of N [0] that has
empty intersection with L[0]. The required 1-chain w is a path along edges of N such that
φ(JwK, [0,h])⊂ N and ∂w = y− x with y ∈N 0

[2m]. In our examples, H0(N0,L0) = 0.
We are ready to formulate the functions used by our algorithm for computing CH(S0,P).

Function MOVABLE in Algorithm 1 is the function which executes the integration of φ over
the time interval [0,h].

1: function MOVABLE(cube Q, set of full cubes A)
2: set of full cubes B := COVER(Q, [0,h])
3: if B ⊂A then return TRUE
4: else return FALSE

ALGORITHM 1

Proposition 7.5.
(i) If MOVABLE(Q,N 3) is TRUE for a cube Q ∈N , then φ(JQK, [0,h])⊂ N.

(ii) If MOVABLE(Q,L3) is TRUE for a cube Q ∈ L, then φ(JQK, [0,h])⊂ L.

Proof.
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(i) By assumption, COVER(Q, [0,h]) = Φ(Q, [0,h])∩K ⊂N 3. This yields

φ(JQK, [0,h])⊂ intJΦ(Q, [0,h])∩ (K∪ (X \K)K⊂ JN 3K∪ JX \KK,

which is a disjoint union since WRAP(N 3)⊂K. The claim follows from the con-
nectedness of φ(JQK, [0,h]) and JQK⊂ JN 3K.

(ii) This is analogous to (i).
�

The functions USABLEN and USABLEL in Algorithm 2 confirm that a cube can be used
as a summand of w or z, respectively.

1: function USABLEN(square Q)
2: if Q /∈N 2 then return FALSE

3: for F ∈ COBOUNDARY(Q)∩N 3 do
4: for Q′ ∈ BOUNDARY(F) do
5: if not MOVABLE(Q′,N 3) then
6: break . try other full cube F
7: return TRUE

8: return FALSE

9: function USABLEL(edge e)
10: if e /∈ L1 then return FALSE

11: if MOVABLE(e,L3) then
12: for Q ∈ COBOUNDARY(e) do
13: if USABLEN(Q) then
14: return TRUE

15: return FALSE

16: function USABLEN(2-chain c)
17: set of squares A := {Q | c(Q) 6= 0}
18: if not A⊂N 2 then return FALSE

19: for Q ∈ A do
20: if not USABLEN(Q) then return FALSE

21: return TRUE

ALGORITHM 2

Lemma 7.6.
(i) If USABLEN(Q) is TRUE, then φ(JQK, [0,h])⊂ N.

(ii) If USABLEL(e) is TRUE, then φ(JeK, [0,h])⊂ L.
(iii) If USABLEN(c) is TRUE, then φ(JcK, [0,h])⊂ N.

Proof. This follows from Proposition 7.5. �

Remark 7.7. The checks in functions USABLEN and USABLEL are slightly more restric-
tive than one might expect. Note that USABLEN(Q) is TRUE iff Q is in the boundary of a
full cube F for which all boundary cubes are movable. In practice, this helped avoid some
dead ends in Algorithm 5.
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The symbol VAR in Algorithms 3 and 4 means that the following variable is passed by
reference to the function.

For a vertex y = [i]× [ j]× [k] ∈ L0, define the following 5-tuple S(y) of oriented edges

S(y) = ([i, i+1]× [ j]× [k], [i]× [ j, j+1]× [k], [i]× [ j]× [k,k+1],

− [i]× [ j−1, j]× [k], −[i]× [ j]× [k−1,k]),

which is used in Algorithm 3.

1: function PATHBACKTRACKING(VAR path c, vertex x)
2: if c = 0 then y := x
3: else
4: let e be the last edge of c
5: if not USABLEL(e) then return FALSE

6: let y be the endpoint of c
7: if y ∈ L0

[2m] then return TRUE

8: for d ∈ S(y) do
9: 1-chain s := c+d

10: if PATHBACKTRACKING(s, x) then
11: c := s; return TRUE . success
12: return FALSE . c remains unchanged

13: function PATH(vertex x)
14: 1-chain cx := 0
15: if PATHBACKTRACKING(cx, x) then return cx
16: else return FAILURE

ALGORITHM 3

Proposition 7.8. Assume that function PATH from Algorithm 3 is called with a vertex
x∈L0

[0] as input. If it terminates successfully, then it returns a path cx satisfying ∂cx = y−x

for some y ∈ L0
[2m] and φ(JcxK, [0,h])⊂ L.

Additionally, for every n ∈ {0, . . . ,2m−1} there is exactly one edge e such that π1(e) =
[n,n+1] and cx(e) 6= 0. This edge has coefficient cx(e) = 1.

Proof. The algorithm performs a depth-first search using backtracking. A new candidate
path s is rejected in line 10 if USABLEL(d) = FALSE. Therefore φ(JcxK, [0,h])⊂ L follows
from Lemma 7.6(ii). The last property follows from the definition of S(y). �

First we use cubical homology software to construct a finite basis {[u j]} of H1(N [0],L[0]),
where each u j ∈C1(N [0],L[0]) is a path. From here on we drop the index j for readability
and fix some 1-chain u = u j. Then ∂ ([0]×u) = x+−x− with x+,x− ∈ L0

[0]. The 2-chain w
is constructed by successively adding oriented squares. If necessary, squares within a layer
N [n] are added using the function FLOODFILL in Algorithm 4.

Proposition 7.9. The function FLOODFILL from Algorithm 4 with input Q ∈N 2
[n], a chain

c ∈ C1(N [n]) and D = 0 ∈ C2 terminates. After execution, D is a 2-chain in N [n] with
φ(JDK, [0,h])⊂ N.



28 MARIAN MROZEK, ROMAN SRZEDNICKI, AND FRANK WEILANDT

1: function FLOODFILL(square Q ∈N [n], 1-chain c, VAR 2-chain D)
2: if (D(Q) 6= 0 or not USABLEN(Q)) then return
3: D := D+Q
4: for edges e′ with (∂Q)(e′) 6= 0 do . add neighboring squares of Q
5: if c(e′) 6= 0 then continue . do not cross c
6: for Q′ ∈ COBOUNDARY(e′)∩N [n] do
7: if not USABLEN([n,n+1]×∂ π̂1(Q′)) then
8: if Q′ 6= Q then
9: FLOODFILL(Q′,c,D)

ALGORITHM 4

Proof. The recursion terminates because N 2
[n] is finite, hence the search tree is finite. The

property φ(JDK, [0,h])⊂ N is guaranteed by the check in line 2 and Lemma 7.6(i). �

We are ready to formulate Algorithm 5 which constructs v given u. The idea is sketched
in Figure 2. Note that the lines containing w could be removed without changing the
behavior of the algorithm.

1: function FINDPARTNER(1-chain u)
2: 0-chain x+− x− := ∂u
3: 1-chain z := PATH(x+)− PATH(x−)
4: 2-chain w := 0
5: 1-chain v := u+ z[0]
6: for n := 0 to 2m−1 do
7: OUTERLOOPLABEL:
8: for e with v(e) 6= 0 do
9: if not USABLEN ([n,n+1]× π̂1(e)) then

10: for Q ∈ COBOUNDARY(e)∩N [n] do . try both sides of e
11: 2-chain D := 0
12: FLOODFILL(Q,v,D)
13: if (∂Q)(e) · v(e) = 1 then D :=−D . switch orientation
14: 1-chain v̄ := ∑v(e′)(∂D)(e′)6=0 v(e′)e′

15: 1-chain v′ := v̄+∂D
16: if USABLEN ([n,n+1]× π̂1(v′)) then
17: w := w−D
18: v := v− v̄+ v′

19: goto OUTERLOOPLABEL

20: return FAILURE . give up if adding squares in N [n] did not help

21: w := w− [n,n+1]× π̂1(v)
22: v := [n+1]× π̂1(v)+ z[n+1]

23: return v

ALGORITHM 5

Definition 7.10. Let i, j ∈ N and i ≤ j. A pair (u,v) of cubical cycles u ∈C1(N [i],L[i]),
v ∈C1(N [ j],L[ j]) is called contiguous and movable if the corresponding pair of singular
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Q

v̄

v

e

v′
D

The squares drawn are in
{Q′ ∈N [n] | USABLEN(Q′) = TRUE}.
Imagine the time axis (n axis)
perpendicular to the figure.
Each square Q′ is dark gray if
USABLEN([n,n+1]×∂ π̂1(Q′)) is
TRUE and light gray otherwise.
Line 7 of Alg. 4 shows that FLOOD-
FILL adds light gray squares to D
(hatched area). The red 1-chain v̄ is
a part of v (red and orange) that is
replaced by the homologous 1-chain
v′ (green).

FIGURE 2. A typical state of the variables of Algorithm 5 in line 15

cycles is a contiguous pair of h-movable cycles over [iT/2m, jT/2m] as defined in Subsec-
tion 4.2.

Proposition 7.11. When function FINDPARTNER from Algorithm 5 is run with input a path
u ∈C1(N [0],L[0]) and it returns v, then (u,v) is a contiguous and movable pair of cubical
cycles. Additionally, ∂w = u− v+ z.

Proof. Proposition 7.8 and the definition of z in line 3 show that φ(JzK, [0,h]) ⊂ L. Note
that right after the initialization of v in line 5, the pair (u,v) is contiguous and movable
because u− v+ z[0] = 0. Then for every change of the variable v, let vold be its old value
and vnew its new value. The proposition is proven by showing that the pair (vold,vnew) is
contiguous and movable at every change (cf. Lemma 4.3). There are two kinds:

(i) The change in line 18: Observe that ∂D = vnew− vold and φ(JDK, [0,h])⊂ N because
it was constructed using FLOODFILL (cf. Proposition 7.9)

(ii) The change in line 22: The successful termination of the for-loop in line 8 together
with the check in line 9 ensures that φ(J[n,n+1]× π̂1(vold)K, [0,h])⊂N by Lemma 7.6(i).
Additionally,

∂ ([n,n+1]× π̂1(vold)) = ∂ [n,n+1]× π̂1(vold)− [n,n+1]×∂ π̂1(vold)

= [n+1]× π̂1(vold)− [n]× π̂1(vold)− z(n,n+1) = vnew− vold− z(n,n+1].

The property ∂w= u−v+z follows from adding these equations over all changes of w. �

Proposition 7.11 and Theorem 4.5 now yield:

Theorem 7.12. Let T/h ∈ Q and let (N ,L) be sets of cubes constructed as above, in
particular (JNK,JLK) is a weak index pair for (S,φh).

When the function FINDMATRIX from Algorithm 6 does not fail and returns A, then
CH(S0,P) is equal to the conjugacy class of RA.

Proof. Observe that each pair (v j,∑i ai jūi) is contiguous and movable by construction in
Algorithm 6. Since all pairs (u j,v j) are contiguous and movable by Proposition 7.11, all
pairs (u j,∑i ai jūi) are contiguous and movable by Lemma 4.3. �
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1: function FINDMATRIX(sets of full cubes N ,L)
2: construct {u1, . . . ,uk} ⊂C1(N [0],L[0]) representing a basis of H1(N [0],L[0])
3: ūi := [2m]× π̂1(ui) for each i
4: (k× k)-matrix A = [ai j], every ai j := 0 ∈ F.
5: for j := 1 to k do
6: v := FINDPARTNER(u j)
7: construct w′ ∈C2(N [2m]) such that: . analogous to Alg. 5, lines 7 to 20

(i) MOVABLE(Q,N 3) whenever w′(Q) 6= 0;
(ii) if (v−∂w′)(e) 6= 0, then MOVABLE(e,L3) or ui(e) 6= 0 for some i; and

(iii) there is an edge e such that v(e)w′(e) = 1.
8: v′ := v−∂w′

9: for i := 1 to k do . fill column j of matrix A
10: find e ∈N 1

[2m] such that ūi(e) · v′(e) 6= 0
11: if such an e was found then ai j := v′(e)/ūi(e)

12: while c := v′−∑i ai jūi 6= 0 do . check if column j of A is correct
13: let e be an edge with c(e) 6= 0
14: if MOVABLE(e,L) then v′ := v′− c(e)
15: else return FAILURE

16: return A

ALGORITHM 6

8. EXAMPLES

8.1. One-dimensional first relative homology. We applied Algorithm 6 using the weak
index pair constructed as in Subsection 6.3 to the differential equation

ż = (1+ eiηt |z|2)z,

which shows chaotic behavior for η ∈ (0,1] (cf. [21] and references therein). This equa-
tion has period T = 2π/η in t. We analyzed the equation for η = 2.0 using the pa-
rameter h = 1/64 = 0.015625. More precisely, since π is irrational, the algorithm used
π ′ ∈ [π− ε,π + ε], where ε is the machine precision. Therefore T ′ = 2π ′/η ∈ Q, i.e.,
the numerical proof is found for η ′ = 2π ′/T ′ instead of η . We covered the candidate
M = S1× [−3,3]× [−3,3] = JMK for an isolating neighborhood using cubes of equal size
as described above. Our algorithm found a combinatorial index pair (N ,L) inside M
at a subdivision depth of m = 6. The chains constructed by our algorithm are shown in
Figure 3. The output was A = [−1].

Theorem 7.12 applies. We conclude that the generator [u]∈H1(N0,L0) is sent to−[u]∈
H1(N0,L0) under the relative homology endomorphism induced by the Poincaré map P.

Finding the combinatorial index pair (N ,L) took 330 seconds seconds using a 2.4GHz
CPU with 6 GB of RAM. The construction of all the chains in Algorithm 6 took 149
seconds. Most of the time was used for the rigorous integrations. The set K consists of
(26)3 = 262144 cubes, the set N of 132728 cubes.

8.2. Two-dimensional first relative homology. We applied the same algorithms as above
to the equation

ż = eiηtz2 + z,
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↓ u

(A) The full cubes in (N ,L) (blue: L3, red:
N 3 \L3) and u on the left-hand side.

u ↓
v ↑

w

←−z

(B) The blue squares are L2
[0] ∪L

2
[2m]. Sim-

ilarly for N . The chains after executing
FINDPARTNER(u) are shown.

FIGURE 3. The intermediate
results of the example in Sec-
tion 8.1. The algorithm makes
sure that ∂w = u − v + z as
shown in Figure 3B. Figure 3C
shows the construction of v′

from v. Note that ∂w′ − v +
v′ lies in L. The movability
properties of the chains cannot
be seen in the figure, but are
checked numerically. The out-
put is A = [−1], which can be
seen from Figure 3C because u
points down and v′ points up.

v′
↑u ↓

w′

v ↑

(C) Overall results. In this special exam-
ple, the support of v′ is contained in the
support of v.

This equation has period T = 2π/η in t. We analyzed the equation for η = 2.0. Again,
we used the candidate M = S1× [−3,3]× [−3,3] = JMK for an isolating neighborhood.
Our software found a combinatorial index pair (N ,L) insideM at a refinement depth of
m = 7 using the parameter h = 1/64. The index pair with the resulting chains is shown
in Figure 4. Using Theorem 7.12, the Conley index of the Poincaré map is given up to
conjugacy by

CH(S0,P) = RA = R
([
−1 −1
1 0

])
=

[
−1 −1
1 0

]
.

Finding (N ,L) took 2256 seconds on the same hardware as before. Then Algorithm 6
required further 545 seconds.

In contrast to this, when starting with M = S1× [−0.1,0.1]× [−0.1,0.1], the algorithm
yields a different Conley index because the output in this case is A = [1]. Since the Conley
index is a function of the invariant sets, Inv([−0.1,0.1]2,P) 6= Inv([−3,3]2,P).
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↑ u1

u2

↘

(A) Index pair (N ,L) and 1-chains u1,u2

u1
↖

↓ v1

v1

w1

(B) The construction of v1. Note that v1 con-
sists of two connected 1-chains, one of which
has boundary 0.

u1
↖

u2
←

↓ v1 w′1

ū1↖

ū2
↙

(C) The 2-chain w′1 fills most of
N [2m] \L[2m]. Here v′1 =−ū1 + ū2.

u1
↖

u2↙
w2

v2 ↓
w′2

ū1↖

(D) Computing the second column of A.
Here v′2 =−ū1.

FIGURE 4. Outputs for the example in Subsection 8.2, using the same
colors as in Figure 3

9. CONCLUDING REMARKS

The theory and algorithms presented in this paper show that the Conley index of a
Poincaré map may be computed algorithmically without the need of the, often prohibitive
and always computationally very expensive, long time rigorous integration. Moreover, the
proposed method uses general algorithms for the construction of index pairs applied to the
time h map of the flow and, in consequence, is fully automatic. In particular, it does not
require manual construction of isolating blocks as in the case of the method presented in
[21].

In this paper the method, particularly Theorem 4.5, is only developed for periodic
non-autonomous equations. By their very nature, these systems yield easily describable
Poincaré sections – the hyperplanes for fixed [t] ∈ S1. An analogous method for Poincaré
maps of periodic orbits of arbitrary autonomous ODEs is more challenging but we are con-
vinced it is possible and definitely very desirable. We leave it as the subject of subsequent
research.
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The idea of the algorithms in Section 7 also applies to higher-dimensional spaces. If we
work on the cylinder Σ =R/TZ×Rd and we are interested in the Conley index CH(S0,P)
for d ≥ 3, then the generalization is straightforward: The set N [n] then represents a d-
dimensional hyperplane, and the function FLOODFILL should be adapted to recursively
add squares inN 2

[n]. For d = 3, the intermediate steps for each n could easily be visualized.
Larger d are harder to handle because the runtime and the memory of our integration
algorithms grow exponentially with dimension.
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system, SIAM Journal on Applied Dynamical Systems, 9 (2010), 1263–1283.
[34] D. Wilczak, P. Zgliczynski, Cr-Lohner algorithm, Schedae Informaticae, 20 (2011), 9–46.
[35] P. Zgliczynski, C1-Lohner algorithm, Foundations of Computational Mathematics, Springer New York, 2

(2008), 429–465.
[36] Computer Assisted Proofs in Dynamics, http://capd.ii.uj.edu.pl/.

DIVISION OF COMPUTATIONAL MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
JAGIELLONIAN UNIVERSITY, UL. ŁOJASIEWICZA 6, 30-348 KRAKÓW, POLAND
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