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Abstract. We find an explicit formula of the Bergman and the
Carathéodory metrics for the symmetrized bidisc G2. We also show
that Carathéodory metric for G2 is not differentiable.

1. Introduction

We study invariant metrics on the symmetrized bidisc. The main
part is devoted to the Bergman metric. Using the orthonormal basis
for the space L2

h(G2) and the Jacobi-Trudy identities we calculate this
metric on G2. Approach which we present might be applicable to any
domain and in any dimension. The only problem lies in finding the
sum of some series. In fact, this method works for the Bergman ker-
nel function and sectional curvature, too. In the last part we study
Carathéodory metric on this domain.

The symmetrized bidisc is the first known example of a domain not
biholomorphic to a convex one for whose the Lempert theorem holds,
s.e. [5]). Moreover, it plays also an important role in solving Pick-
Nevanlinna Interpolation Problem in dimension n = 2 (see e.g. [1]).
Thus it is worth to understand better its geometric properties.

There are few examples of domains for whose the Bergman metric is
known: Euclidean ball, minimal ball, polydisc and some special elip-
soids (see e.g [7]), and this is an additional reason which encourages us
to find βG2 .
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2. The Bergman metric for G2

Let s : C2 → C2 be the symmetrization function given by the formula

s(z1, z2) = (z1 + z2, z1z2) =:
(
s1(z1, z2), s2(z1, z2)

)
, z1, z2 ∈ C.

Recall that the map s|D2 : D2 → s(D2) =: G2 is a proper holomorphic
one (see e.g. [11]) and its image G2 is called the symmetrized bidisc.
We put s0(z1, z2) = 1, sk(z1, z2) = 0 for k 6= 0, 1, 2.

Let D be a bounded domain in C2. Denote by KD and βD the
Bergman kernel function and the Bergman metric (for basic properties
see [7]), respectively:

KD(z, w) =
∞∑
j=1

ϕj(z)ϕj(w),

β2
D(z;X) =

∑
1≤j,k≤2

∂2

∂zj∂zk
logKD(z, z)XjXk, for z, w ∈ D, X ∈ C2,

where {ϕj} is an orthonormal basis for

L2
h(D) = {f εO(D) :

∫
D

|f |2dV <∞}.

It turns out that the above definition of the Bergman metric is not
good tool for explicit calculation. Therefore, we use another attitude,
but which is equivalent to the above one. So, an alternative description
is as follows

(1) βD(z;X)

=
1√

KD(z, z)
sup{|f ′(z)X| : f εO(D), f(z) = 0, ‖f‖L2

h(D) ≤ 1}.

Also the Bergman kernel function on the diagonal might be represented
as a solution of some extremal problem, that is

KD(z, z) = sup{|f(z)|2 : ‖f‖L2
h(D) ≤ 1}, z ∈ D.

One of the most important property of the Bergman metric is that it
is invariant under biholomorphic mappings. Recall that the group of
automorphisms of the symmetrized bidisc Aut(G2) (see [8]) consists of
mappings of the form

H(z1 + z2, z1z2) = (s1(h(z1), h(z2)), s2(h(z1), h(z2))), z1, z2 εD,

where h εAut(D). Therefore, it is enough to compute the Bergman
metric in the symmetrized bidisc at points of the form (0, s2) with
s2 ∈ [0, 1).
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A finite sequence p = (p1, . . . , pn) of decreasing (not necessarily
strictly) non-negative integers we call partition (n is the length of
the partition). By [n] denote the set of all partitions of size n. If
δ := (n− 1, . . . , 0), then [[n]] := [n] + δ. We shall define constant

c2p =
p1(p2 + 1)

π2
,

and Schur polynomial

Sp(z) =
ap(z)

aδ(z)
, z εD2,

where ap(z) := zp11 z
p2
2 − z

p2
1 z

p1
2 for any p ε [[2]] (It is a very special case

of more general situation - see e.g. [6]). Elementary calculation shows
that Sp is actually polynomial. We additionally define Sp = 0, if p ∈
Z2 \ [[2]]. From [9] we know that the complete orthonormal system for
L2
h(G2) is

{ep = cpSp : p ε [[2]]}.
There are some relations between Schur polynomials and elemen-

tary symmetric functions, called the Jacobi-Trudy identities (see [6]).
But to understand them we need the notion of conjugate partition.
If λ = (λ1, . . . , λn) ε [n], then conjugate partition to λ is a partition
µ = (µ1, . . . , µλ1) (denoted by λ′) such that µk = #{j : λj ≥ k}. The
Jacobi-Trudy identities are described as following

Sp+(1,0) = det[sµl+k−l]k,l=1,...,p1−1.

They imply

Lemma 1.

S(k+m,m)+δ(s1, s2) = sm2
∑b k

2
c

l=0
(−1)l

(
k − l
l

)
sk−2l1 sl2, for k, m > 0,

where the symbol b·c denotes the greatest integer function.

Let A be any non empty set. Consider

l2(A) := {(xa)aεA : xa εC,
∑
aεA

|xa|2 <∞}.

It is the Hilbert space with the standard scalar product

〈x, y〉 :=
∑
aεA

xaya.

If B ⊂ A, then the space l2(B) is naturally embeded in l2(A).
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Theorem 1. For s2 ε [0, 1)

βG2

(
(0, s2); (X1, X2)

)
=
√
B1|X|21 +B2|X|22 ,

where B1 = 4x2+10x+2
(1−x)2(3x+1)

, B2 = 39x2+18x+7
(1−x)2(3x+1)2

with x = s22.

Proof. Recall that

βG2

(
(0, s2);X

)
=

1√
KG2((0, s2), (0, s2))

×

sup{|f ′(0, s2)(X)| : f εL2
h(G2), f(0, s2) = 0, ‖f‖L2

h(G2) 6 1}.
Denote by c, x0 vectors:

x0 =
{(

(−1)n
√

(
(k + 2n+ 1)(k + 1)

π2
) sn+k2

)
(k+2n+1,k)

}
k, n>0

,

and

c =
{(

(−1)n(n+k)

√
(k + 2n+ 1)(k + 1)

π2
sn+k−12 X2

)
(k+2n+1,k)

}
k, n>0

∪
{(

(−1)n(n+ 1)

√
(k + 2n+ 2)(k + 1)

π2
sn+k2 X1

)
(k+2n+2,k)

}
k, n>0

.

Vector c induces bounded operator

Λ : l2([[2]])→ C,

Λ(z) = 〈z, c〉 .

Fix f =
∑

p ε [[2]] αpcpSp from L2
h(G2). Let α = {αp}p∈[[2]] . Notice that

f ′(0, s2)X = Λ(α).

Consequently, the supremum which appears in formula for βG2 is equal
to √

KG2((0, s2), (0, s2) βG2((0, s2);X) = ‖Λ|{x0}⊥‖
(norm of the operator Λ restricted to {x0}⊥). Before we write explicite
formula for that supremum we state

Lemma 2. Let Λ : H → C be any bounded linear functional on a
Hilbert space H and let H =

⊕
1≤j≤nHj be a direct product of pairwise

orthogonal subspace Hj of H, then

‖Λ‖2 =
∑

1≤j≤n

‖Λ|Hj‖2.

Moreover, the statement remains true for countably many orthogonal
subspaces.
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Proof. It is a consequnce of the Riesz representation theorem and the
Pythagorean theorem. �

So

‖Λ|{x0}⊥‖
2 = ‖Λ‖2 − ‖Λ|span{x0}‖2 = 〈c, c〉 −

∣∣〈c, x0〉∣∣2
〈x0, x0〉

.

We put x = s22. To finish the proof it is enough to find the remaining
scalar products:

〈x0, x0〉 = KG2((0, s2), (0, s2)) =
3x+ 1

π2(1− x)4
,

〈c, c〉 =
4x2 + 10x+ 2

π2(1− x)6
|X1|2 +

27x2 + 46x+ 7

π2(1− x)6
|X2|2,

|〈c, x0|2 =
(9x+ 7)2x

π4(1− x)10
|X2|2.

�

3. The Carathéodory metric for the symmetrized bidisc

In [2] the authors computed the Carathéodory pseudodistance cG2

for G2 for the origin, so one can easily find Carathéodory-Reiffen γG2

metric for G2 at origin (for definitions s.e. [7]). Recall, that if (s1, s2)
is a point from G2 then (s.e. [2])

cG2((0, 0), (s1, s2)) =
2|s1 − s2s1|+ |s21 − 4s2|

4− |s1|2
.

Consequently,

(2) γG2((0, 0); (X1, X2)) =
|X1|+ 2|X2|

2
,

where (X1, X2) ∈ C2.
A formula for γG2 was derived indepently by Costara and Agler,

Young (s.e. [5]). Recall

(3) γG2

(
(0, p);X

)
= max

{
γD
(
fω(0, p); f ′ω(0, p)(X)

)
: fω(x, y) =

2ωy − x
2− ωx

, ω ∈ T
}
.

Note, that

(4) γD
(
fω(0, p); f ′ω(0, p)(X)

)
=

∣∣ωpX1 + 2X2 − ωX1

∣∣
2(1− p2)

,
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so γG2((0, p); (X1, X2)) = γG2((0, p); (X1, X2)) = γG2((0, p); (X1,−X2))
for X1 ≥ 0, 1 > p ≥ 0. Thus, if X2 = r2e

iφ with r2 ≥ 0, we can assume
φ ∈ [0, π

2
].

Now, take a, b positive real numbers and consider equation

(5) H(λ) = λ4 − λ2(2 + a2 + b2) + 2λ(a2 − b2) + (1− a2 − b2) = 0.

Note, (5) has only one solution in (−∞,−1). Indeed, let us define

G(λ) = a2

(λ+1)2
+ b2

(λ−1)2 , and notice that if λ ∈ (−∞,−1), then G(λ) = 1

iff H(λ) = 0.
To formulate the next lemma we shall need some auxiliary constants

(6) a =
r2 sinφ (p+ 1)

pr1
, b =

r2 cosφ (1− p)
pr1

,

where r1 > 0, r2 ≥ 0, 1 > p > 0, π
2
≥ φ ≥ 0.

Lemma 3. Let p ∈ (0, 1) and X = (X1, X2) = (r1, r2e
iφ) ∈ R>0 × C.

For r1r2 6= 0 let a, b be the constants given by (6), and let λ be the
only root in (−∞,−1) of the polynomial (5). Then

γG2

(
(0, p);X

)
=



√
(p+1)2|X1|2+(4+

(1−p)2
p

)|X2|2

2(1−p2)
if pr1r2 6= 0, sinφ = 0, b 6 2,

√
[1+p2−2p(2λ+1)+ 4pb2

(1−λ)2
]|X1|2+4|X2|2

2(1−p2)
if pr1r2 6= 0, sinφ 6= 0, or
if pr1r2 6= 0, sinφ = 0, b > 2.

Remark 1. Cases not covered by the Lemma 3 can be achieved by
considering the relevant limits (recall ΓG2 is locally Lipschitz - see e.g.
[7]).

Proof. The square of numerator in (4) can be written as follows (ω =
eiθ)

F (θ) = r21(p
2 + 1) + 4r22 + 2pr21

[(
sin θ + a

)2 − ( cos θ + b
)2 − a2 + b2

]
.

To localize the global maximum of the function f(x, y) = (x+a)2−(y+
b)2 on a set x2 + y2 = 1 it is enough to apply Lagrange multipliers. �

Remark 2. From Lemma 3 we may deduce that the Carathéodory met-
ric is not differentiable. Indeed, the differentiability is lost at points
((0, p); (1, r2)), where p ∈ (0, 1) and r2 is the positive real number such
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that b in (6) is 2. For that it is enough to consider the limits:

lim
R3X2→r+2

γG2((0, p); (1, X2))− γG2((0, p); (1, r2))

X2 − r2
= Cp(

2(1− p)
p

+
4

1− p
),

and

lim
R3X2→r−2

γG2((0, p); (1, X2))− γG2((0, p); (1, r2))

X2 − r2
= Cp(

1− p
p

+
4

1− p
),

where C = 1
2(1−p2)2γG2

((0,p);(1,r2))
.

Remark 3. One might check that βG2/γG2 ≥ 1, 41421. It seems that
this quotient is greater or equal to

√
2. Since λ is given as a solution

of (5), it is much more difficult to get any reasonably estimate from
above.
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