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INTRODUCTION

A map F : M → N ⊂ R
k between two compact Riemannian manifolds M and N is called

harmonic if it is a critical point of the functional

E(F ) =
1

2

∫

M
|∇F |2 dVM .

The heat flow for harmonic maps was introduced by Eells and Sampson [7] as a method of deforming

any smooth map F0 to a harmonic map via the equation

∂tF = (∆F )⊤, F |t=0 = F0, (1)

where (∆F )⊤ is a projection of (∆F ) ∈ R
k to TFN—a tangent space to N at the point F . For any

solution to (1) we have

d

dt
E(F ) = −

∫

M
|∂tF |2 dVM ≤ 0.

If the flow exists for all times, E(F ) ≥ 0 converges to some E∞, suggesting that F → F∞ with F∞

being a harmonic map. This approach proved to work only for target manifolds N with non-positive

sectional curvature. If there is a point in N with positive sectional curvature, the gradient of a

solution to (1) may blow-up in a finite time. In consequence, existence of global in time solutions

may be established only in a weak sense [6]. Moreover, the uniqueness of solutions can no longer

be guaranteed [6]. For explicit examples of non-unique weak solutions to (1) in the case of maps

R
d → Sd with 3 ≤ d ≤ 6 see [3] and [10].

In order to overcome the problems posed by a finite-time blow-up and to investigate the cir-

cumstances in which the uniqueness is lost one has to fully understand the blow-up mechanism.

The most general classification of solutions with a blow-up divides them into two types. We call a

solution F to (1) that blows up in finite time T to be of type I if there exists a constant C such

that

(T − t) sup
M

|∇F |2 ≤ C (2)

holds for t < T where T is the blow-up time; if (2) does not hold the blow-up is of type II.

The reason for this classification becomes clear when we take maps R
d → N . Then, if the blow-

up is of type I, we know that F (x, t) = w
(

x−x0√
T−t

)

near an isolated singularity located at (x0, T ) [18,

p. 293]. The function w : Rd → N describes the profile of a singular solution F and the question



3

of existence of singular solutions of type I reduces to the question of existence of admissible profile

functions w. When the blow-up is of type II there is no similar universal description of what F

looks like near the singularity and any type II solution has to be considered on a case by case basis.

A careful reader will notice that Rd is not a compact manifold. Because in this paper we consider

only isolated singularities it is a matter of convenience to replace the compact domain M with a non-

compact tangent space Tx0
M = R

d, i.e. to neglect the curvature of the domain. Such simplification

does not affect the blow-up mechanism.

Let us consider the simplest positively curved target, Sd embedded in R
d+1 in a canonical way.

The deformation of a map R
d → Sd according to the harmonic map heat flow (1) simplifies to

∂tF = ∆F + |∇F |2F. (3)

Let us introduce spherical coordinates (r, ω) on R
d and coordinates (u,Ω) on Sd, with u denoting

the latitudinal position on Sd and Ω ∈ Sd−1 parametrizing the equator. Using these coordinates

we can further restrict F to a highly symmetric class of k-corotational maps

(r, ω) → (u(r, t),Ωk(ω)). (4)

Ωk is a (non-constant) harmonic map with a constant energy density |∇Ωk|2 = k(k + d − 2), the

number k = 1, 2, 3, . . . corresponds to a topological degree of map (4). The class of k-corotational

maps is preserved by the harmonic map flow and the ansatz (4) reduces (3) to

∂tu =
1

rd−1
∂r

(

rd−1∂ru
)

− k(d+ k − 2)

2r2
sin(2u). (5)

The Dirichlet energy E(F ) can be expressed (up to a multiplicative constant) in terms of u as

E(u) =
1

2

∫ ∞

0

(

(∂ru)
2 + k(d+ k − 2)

sin2(u)

r2

)

rd−1 dr (6)

Regularity of F enforces a boundary condition u(0, t) = 0, while boundary condition at r = ∞
follows from the finiteness of Dirichlet energy E(u) <∞. The monotonicity of energy

d

dt
E(u) = −

∫ ∞

0
(∂tu)

2rd−1 dr ≤ 0 (7)

ensures that the blow-up can happen only at r = 0. Let us define R(t) as the smallest spatial scale

involved in the blow-up (obviously, R(t) → 0 with t → T ). When we approach the blow-up time,

the solution on the scale r = O(R(t)) looks like u(r, t) = Q
(

r
R(t)

)

for some fixed profile Q. This

motivates the following definition of a blow-up rate

R(t) =
1

supr≥0 |∂ru(r, t)|
. (8)
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By the definition (8) of the blow-up rate R(t), a re-scaled solution u(r/R(t), t) has a bounded

gradient for all times t < T :

sup
r≥0

|∂ru(r/R(t), t)| = 1.

The blow-up mechanisms governed by (5) depend heavily on k and d and can be either Type

I or Type II. For k-corotational maps in dimension d = 2 van den Berg, Hulshof and King [19]

derived formal results for blow-up rates. In particular, for 1-corotational maps, they conjectured

that the generic blow-up is of Type II with the blow-up rate

R(t) ∼ (T − t)

| log(T − t)|2 as tր T.

Recently, this result has been proved by Raphael and Schweyer [16] by using methods coming from

analysis of dispersive equations. For 1-corotational maps in dimension 2 other, non-generic blow-up

rates, are also possible [1].

For 1-corotational maps in dimensions 3 ≤ d ≤ 6 Fan [8] used ODE methods to prove the

existence of a countable family {fn}n=1,2,... of self-similar solutions for which

R(t) ∼ (T − t)
1

2 .

Later, Biernat and Bizoń [3] showed, via numerical and analytical methods, that only f1 is linearly

stable and corresponds to a generic Type I blow-up. Gastel [9] proved that the solution f1 exists

also for k-corotational maps as long as 3 ≤ d < 2 + k(2 + 2
√
2). On the other hand, there are no

results in the literature on dimensions d > 2 + k(2 + 2
√
2), even for 1-corotational maps.

Statement of the main result

In our paper we use a method of matched asymptotics to construct a generic type II solution

for 1-corotational maps in dimensions d ≥ 7. As t ր T , the blow-up rates of these solutions are

asymptotically given by

R(t) ∼ C(T − t)
1

2

− log(T − t)− κ
for d = 7 (9)

R(t) ∼ κ(T − t)
1

2
+β1 for d > 7 (10)

with β1 > 0 defined as

β1 = −1

2
+

2

d− 2− ω
, ω =

√

d2 − 8d+ 8. (11)
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For each blow-up rate the constant κ represents the dependence on initial data, while in (9) the

constant C is a fixed number. Interestingly, the blow-up rate in dimension d = 7 is, to the leading

order, equal to

R(t) =
C(T − t)

1

2

− log(T − t)
(1 +O(|log(T − t)|−1)), tր T

so, in dimension 7, the blow-up rate is asymptotically independent of initial data.

Dimension d = 7 can be seen as a borderline between type I and type II blow-ups. If one forgets

about the underlying geometric setup and allows for non-integer values of d, then all our results

remain valid. For d slightly less than 7 numerical evidence indicates a presence of a generic type

I blow-up. On the other hand, when d approaches 7 from above, β1 continuously drops to zero.

So for d < 7 we have a type I blow-up but for all d > 7 we have a power-law type II blow-up

of the form (10). Naively, one could arrive to a conclusion that for d = 7 we should have a type

I blow-up. Instead, we get a type II blow-up (9) corresponding to a type I blow-up rate with a

logarithmic correction. The transition from type I to type II solution at d = 7 also indicates that

the self-similar solutions to (9) cease to exist for d ≥ 7; but analysis of these vanishing self-similar

solutions is beyond the scope of this paper.

In fact, the results for 1-corotational maps are a special case of a more general result for k-

corotational maps that we derive. For k-corotational maps with dimension d and any positive

integer N satisfying

RN (t) ∼ κ(T − t)
1

2
+βN for

d > 2 + k(2 + 2
√
2)

N >
1

4
(d− 2− ω),

(12)

RN (t) =
C (T − t)

1

2

(− log(T − t) + s0)
1

δ

for
d > 2 + k(2 + 2

√
2)

N =
1

4
(d− 2− ω),

(13)

with βN > 0 defined as

βN = −1

2
+

2N

d− 2− ω
, ω =

√

(d− 2(k + 1))2 − 8k2

and δ > 0 equal to

δ = min(ω, d − 2− ω). (14)

From the dynamical system point of view, each of these solutions corresponds to a saddle point

with N−1 unstable directions. The constants κ and s0 depend on initial data, while C is a function
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of d and k only. This means that asymptotically blow-up rate (50) is universal for all initial data:

RN (t) =
C (T − t)

1

2

(− log(T − t))
1

δ

(1 +O(|log(T − t)|−1)), as tր T.

To obtain the blow-up rates we employed a technique, called matched asymptotics, which allows

to construct approximate solutions to a differential equation on several spatial scales. The method

of matched asymptotics expansions was also used to obtain formal type II solutions for the equation

∂tu = ∆u + up in [12] (see [11] for details); these solutions have a similar stability properties as

solutions (49). On the other hand, the case of 1-corotational maps in d = 7 (and (50) in general)

resembles the solutions found by Herrero and Velázquez who used matched asymptotic to derive

blow-up rates for chemotaxis aggregation in [13, 20] and for the problem of melting ice balls in [14].

As in the papers of Herrero and Velázquez, the blow-up rates are closely connected to the

eigenvalues of a singular self-similar solution. In the case of k-equivariant harmonic maps, this

singular solution is remarkably simple, as it corresponds to a singular equatorial map u(r, t) = π
2 .

The eigenvalues coming from linearization around the equatorial map (λN = −d−2−ω
2 + N for

N = 0, 1, 2, . . . , see also (30)) relate to the blow-up rate exponents via βN = λN

(d−2−ω) . The

interesting case of neutral eigenvalues, λN = 0, requires us to include non-linear corrections into

our analysis and gives rise to the logarithmic terms in the blow-up rate (50). Because there are two

ways in which the nonlinear term can enter the equation, we have to estimate both of them and

decide which is the dominant one. Surprisingly, this dominance—and thus the blow-up mechanism—

is not set in stone but it depends on the dimension, which is reflected by a peculiar formula (14).

The formal solutions constructed in this paper are a first step towards the rigorous proof of

existence of Type II blow-up for the equations of heat flow for k-corotational harmonic maps. The

solutions presented here will be proved to exist in the upcoming paper by the author and Yukihiro

Seki [4]. The proof bases on topological methods similar to the ones used by Herrero and Velazquez

in [11].

CONSTRUCTION OF A BLOWING UP SOLUTIONS

Preliminaries

To describe blow-up at time T it is convenient to introduce the self-similar variables

y =
r√
T − t

, s = − log(T − t), f(y, s) = u(r, t) (15)
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in which the original equation (5) takes the following form

∂sf = ∂yyf +

(

d− 1

y
− y

2

)

∂yf − k(d+ k − 2)

2y2
sin(2f) (16)

The boundary condition u(0, t) = 0 trivially carries over as f(0, s) = 0.

Self-similar solutions are stationary points of the above equation, if they existm they fully capture

the blow-up rate (i.e. the solution is regular for all s including s = ∞). For 1-corotational maps

a countable family {fn}n=1,2,... of self-similar solutions was proved to exist for 3 ≤ d ≤ 6 by Fan

[8]. Biernat&Bizoń [3] demonstrated that only the first member of the family, f1, is linearly stable.

Numerical evidence suggests that for d ≥ 7 these solutions are absent and therefore the Type I

blow-up is no longer possible. For higher topological degrees the only rigorous result on existence

of self-similar solutions, that authors are aware of, is the one by Gastel [9] who proved the existence

of the monotone self-similar solution f1 in dimensions d ≤ 2 + k(2 + 2
√
2). Numerical evidence

suggests, that for all k ≥ 1 and d ≤ 2 + k(2 + 2
√
2) there exists a countable family of self-similar

solutions {fn}n=1,2....

On the other hand, in any dimension d and for any topological degree k (16) there exists

a singular stationary solution, f(y, s) = π/2. This solution is singular because it violates the

boundary conditions at y = 0. Linear stability of this solution heavily depends on d and k. For

k = 1 and dimension d ≥ 7, f(y, s) = π/2 is linearly stable (up to a gauge mode corresponding

to the shift of blow-up time T ). For k ≥ 2 and d > 2 + k(2 + 2
√
2), f(y, s) = π/2 looses some

stability and becomes a saddle point with a finite number of unstable directions. As we shall see,

this solution plays the key role in the dynamics of the blow-up.

Boundary layer

The singular solution f(y, s) = π/2 serves as a starting point for our construction of a Type II

blow-up. The first step is to assume that the constructed solution converges to π/2. The convergence

to π/2 has to be non-uniform because of the boundary condition at the origin f(0, s) = 0. The

non-uniform convergence can be realized by a boundary layer of size ǫ(s) near the origin, where

a rapid transition from f = 0 to f = π/2 occurs. This transition can be described by changing

variables in (16) to

ξ =
y

ǫ(s)
, U(ξ, s) = f(y, s), (17)
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where the dependent variable U solves

ǫ2∂sU = ∂ξξU +

(

d− 1

ξ
+ (2ǫǫ̇− ǫ2)

ξ

2

)

∂ξU − k(d + k − 2)

2ξ2
sin(2U), U(0, s) = 0. (18)

We expect convergence to π/2, so the width of the boundary layer must tend to zero with time,

hence ǫ(s) → 0 for s → ∞. Additionally, we assume that the derivative of ǫ is bounded by ǫ for

large s i.e. ǫ̇(s) = O(ǫ(s)) as s → ∞. Under these assumptions one can drop the quadratic terms

in ǫ and ǫ̇ from equation (18). This leads to a solution U(ξ, s) = U∗(ξ), where U∗(ξ) solves an

ordinary differential equation

d2U∗

dξ2
+
d− 1

ξ

dU∗

dξ
− k(d+ k − 2)

2ξ2
sin(2U∗) = 0 (19)

with boundary condition U∗(0) = 0 inherited from (18). Any U∗ solving (19) is also a stationary

point of (5), i.e. U∗ is a k-corotational harmonic map.

Equation (19) possesses a scaling symmetry ξ → λξ (with λ > 0), which implies that any

Uλ(ξ, s) = U∗(λξ) is also an admissible approximate solution to (18). To get rid of this ambiguity,

we first notice, that any regular solution to (19) behaves like U∗(ξ) = aξk +O(ξ3k) near the origin

with some real a. We can fix the scaling freedom by setting a = 1, or equivalently by introducing

an additional boundary condition

U∗(ξ) = ξk +O(ξ3k) as ξ → 0. (20)

Equation (19) simplifies to an autonomous system if we use variables x and v defined as ξ = ex

and 2U∗(ξ) = π + v(x)

v′′ + (d− 2)v′ + k(d+ k − 2) sin(v) = 0. (21)

The boundary condition U∗(ξ) = ξk + O(ξ3k) implies v(x) = −π + ekx +O(e3kx) when x → −∞.

Because (21) is an autonomous equation we can deduce some global properties of U∗ by analyzing

the phase diagram of (21).

The solution to (21) subject to these boundary conditions has a mechanical interpretation of a

motion of a damped pendulum with v being the angular position and x corresponding to the time.

The boundary conditions demand that the pendulum starts inverted, v = −π, at time x = −∞ and

swings out of this unstable position. The damping term forces the pendulum to reach the bottom,

v = 0, when x = ∞. In the phase plane spanned by (v, v′), this trajectory is a heteroclinic orbit

starting at the saddle point (−π, 0) and ending at (0, 0). To get the asymptotic behavior of U∗ at

ξ → ∞ it is enough to linearize (21) at the endpoint of the heteroclinic orbit, as shown in Figure 1.
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FIG. 1. Phase diagram for the equation 0 = v′′ + (d − 2)v′ + k(d + k − 2) sin(v) with k = 1 and d = 8. A

solution joining two critical points of the phase diagram is shown as a dashed line. Additionally, the plot

depicts a trapping region S = {(v, v′) | k sin(v) ≤ v′ ≤ γ sin(v)}, from which no solution can escape (here

γ = 1
2 (d − 2 −

√

(d− 2(k + 1))2 − 8k2) = 3 −
√
2). The trapping region S is used to prove estimates on a

depicted solution in Theorem 1.

To analyze the asymptotic behavior of v(x) for x → ∞ we linearize the equation (21) at the

stationary point (0, 0). The eigenvalues of the linearized equation are

µ+ = −γ, µ− = −γ − ω (22)

with constants γ = 1
2(d−2−ω) and ω =

√

(d− 2(k + 1))2 − 8k2. From the form of the eigenvalues

µ± we see that the stationary point (0, 0) is a stable spiral for d < d∗ := 2+k(2+2
√
2) but changes

to a stable node when d ≥ d∗. It follows that the asymptotic behavior of v, and consequently of

U∗, can be either oscillatory or non oscillatory depending on d for a given k. To proceed with our

construction, we have to assume the latter—non oscillatory—behavior, that is d ≥ d∗. For the

particular case of 1-corotational maps this condition simplifies to d ≥ 7, if we consider only integer

values of d.

There is one last thing to establish before we can make a claim about the asymptotic behavior

of U∗. The formula for asymptotic behavior of v near (0, 0), written explicitly, is

v(x) = 2h+ · exµ+(1 +O(e−2x)) + 2h− · exµ−(1 +O(e−2x)) (23)

(the factor of 2 is a matter of convenience). Because µ+ > µ−, the leading order term should

be 2h+e
xµ+ , unless h+ is zero, in which case the dominant behavior changes to 2h−e

xµ− . In the

appendix (Theorem 1) we exclude this possibility by proving that that h+ is negative. We finally
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conclude that the asymptotic behavior of U∗ for large ξ is

U∗(ξ) =
π

2
− hξ−γ(1 +O(ξ−2) +O(ξ−ω)), (24)

with h = −h+ > 0 depending only on d, and γ > 0 defined as −µ+:

γ =
1

2
(d− 2− ω), ω =

√

d2 − 8d− 8. (25)

Let us check where the approximation of U(ξ, s) by U∗(ξ) is valid. To arrive at the approximate

equation (19) we had to drop the terms containing ǫ and ǫ̇ = O(ǫ). The approximation fails if one

of the dropped terms becomes comparable with the remaining terms. For example we assumed that

the remainder term in

(

d− 1

ξ
+ (2ǫǫ̇− ǫ2)

ξ

2

)

=
d− 1

ξ
(1 +O(ǫ2))

is small. But this assertion clearly fails for ξ of order 1/ǫ, so the approximation U(ξ, s) ≈ U∗(ξ)

can be valid only if ξ ≪ 1/ǫ or, by definition (17), if y ≪ 1.

Linearization around the singular solution

The boundary layer from the previous section resolves a conflict between the boundary condition

f(0, s) = 0 and the assumed convergence of f(y, s) to π/2. In this section, we focus on describing

the solution to (16) away from the boundary layer, i.e. for y of order 1. For such y, we expect the

solution to stay close to f = π/2, so it is convenient to introduce a new variable ψ defined as

f(y, s) = π/2 + ψ(y, s).

The new variable ψ solves

∂sψ = −Aψ + F (ψ), F (ψ) =
k(d+ k − 2)

2y2
(sin(2ψ) − 2ψ) = O(ψ3) (26)

with operator A given by

−Aψ =
1

ρ
∂y (ρ∂yψ) +

k(d+ k − 2)

y2
ψ, ρ(y) = yd−1e−y2/4.

A natural Hilbert space, arising in the context of operator A is
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L2(R+, ρ dy) =

{

f ∈ L2
loc(R+) |

∫ ∞

0
f(y)2ρ(y) dy <∞

}

with a canonical inner product

〈f, g〉 =
∫ ∞

0
f(y)g(y)ρ(y) dy. (27)

It is routine to check that the operator A, under the assumption d > 2+k(2+2
√
2), is self-adjoint

in L2(R+, ρ dy) with domain H1(R+, ρ dy) — a weighted Sobolev space defined in a canonical way.

To find the eigenfunctions of A we have to solve an ordinary differential equation

1

ρ

d

dy

(

ρ
d

dy
φ

)

+
k(d+ k − 2)

y2
φ = −λφ (28)

with the condition φ ∈ H1(R+, ρ(y) dy). After a change of variables φ(y) = y−γw(y2/4) and

z = y2/4 (with ω and γ defined in (25)) equation (28) becomes

z
d2w

dz2
+

(

1− z +
ω

2

) dw

dz
= −

(

λ+
γ

2

)

w. (29)

with the condition w ∈ H1(R+, e
−zz1+ω/2 dz). Combination of the latter condition and the eigen-

value problem (29) leads to w(z) = L
(ω/2)
n (z) with λn + γ/2 = n (n = 0, 1, 2, . . . ), where L

(α)
n (z)

denotes associated Laguerre polynomials. In terms of φ and y these results read

φn = Nny
−γL(ω/2)

n (y2/4), λn = −γ/2 + n, n = 0, 1, 2, . . . (30)

The normalization constant

Nn = 2−1−ω/2

√

Γ(n+ 1)

Γ(n+ 1 + ω/2)
(31)

assures the orthonormality condition 〈φn, φm〉 = δn,m. For completeness we shall add that the

behavior of φn near the origin is

φn = cny
−γ(1 +O(y−2)), cn =

2−1−ω/2

Γ(1 + ω/2)

√

Γ(1 + n+ ω/2)

Γ(1 + n)
. (32)

Given the orthogonality relation and completeness of φn we can represent any solution to (26)

as the following series

ψ(y, s) =
∞
∑

n=0

an(s)φn(y), (33)
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In the above expression an(s) solve non-linear equations

ȧn = −λnan + 〈F (ψ), φn〉 for n = 0, 1, 2, . . . (34)

with ȧn standing for the derivative of an with respect to s and F (ψ) is defined in (26). Unfortunately,

the presence of the non-linear coupling term 〈F (ψ), φn〉 renders (34) impossible to solve in its current

form. In the next section we will make assumptions on the form of ψ, that will allow us to estimate

the non linear term. Consequently, we will be able to produce an approximate solution to (16).

Construction of a global solution

The analysis of the boundary layer solution gives us an approximation

f(y, s) ≈ finn(y, s) = U∗
(

y

ǫ(s)

)

for y ≪ 1. (35)

If we take ǫ ≪ y ≪ 1 we can use the asymptotic formula (24) for U∗ to get

finn(y, s) =
π

2
− hǫ(s)γy−γ (36)

to the leading order. Because ǫ(s) → 0 with s→ ∞, the inner solution finn(y, s) can get arbitrarily

close to π/2 for a fixed y. But if f(y, s) is close to π/2 the eigenfunctions of the linear operator A
should work as a good approximation to the solution f(y, s), so we write

f(y, s) ≈ fout(y, s) =
π

2
+

∞
∑

n=0

an(s)φn(y) for y ≫ ǫ(s). (37)

Without further assumptions, equations (34) for the coefficients an cannot be solved. To proceed

with our construction we have to reduce the number of independent degrees of freedom; we achieve

this by assuming that one coefficient, say aN , dominates the others, i.e.

|aN (s)| ≫ |an(s)| for n 6= N, and s→ ∞. (38)

By (38) the outer solution is dominated by only one eigenfunction φN for large s

f(y, s) ≈ fout(y, s) =
π

2
+ aN (s)φN (y) for y ≫ ǫ(s). (39)

So far, this is the most arbitrary assumption we make, so it is critical to ensure that it does not

lead to a contradiction at the end of the construction. In one of the following sections we verify

this assumption and show which conditions on initial data does (38) require. This analysis leads to

conclusions regarding the stability of constructed solutions.
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Both approximations finn and fout are compatible in the region ǫ ≪ y ≪ 1 if we impose a

relation between aN (s) and ǫ(s). Indeed, the outer solution behaves like

fout(y, s) =
π

2
+ aN (s)φN (y) =

π

2
+ cNaN (s)y−γ(1 +O(y2)). (40)

(cf. (32)) and by comparing (40) with (36) we can choose ǫ such that

cNaN (s) = −hǫ(s)γ . (41)

Equation (41) is called the matching condition and it serves as a link between the inner solution

and the outer solution.

Given solutions (35) and (39), together with condition (41), we can construct a global approxi-

mate solution, which is valid for all y,

fN (y, s) =











finn(y, s) = U∗
(

y
ǫ(s)

)

for y ≤ K

fout(y, s) = π/2 − h
cN
ǫ(s)γφN (y) for y > K

(42)

with K chosen so that ǫ≪ K ≪ 1 (e.g. K =
√
ǫ). For an example of fN see Figure 2.

At this point, we have an ansatz for a global solution with one unknown — function ǫ. To get

ǫ we have to go back to (34), with n = N and aN (s) = −ǫ(s)γ h/cN and solve

γǫ̇ = −λNǫ−
cN
h
ǫ1−γ〈F (ψ), φN 〉 ψ = fN (y, s)− π/2. (43)

The remaining question is in what way does the non-linear term 〈F (ψ), φN 〉 enter the equation?

To answer this question we have to split 〈F (ψ), φN 〉 into contributions from inner and outer solutions.

However, these computations are too technical for this section and would break the flow of the

argument. Instead, we enclose the derivation in the next section and present the resulting formula

here

〈F (ψ), φN 〉 = DN ǫγ+δ, δ = min(ω, 2γ) > 0, DN > 0. (44)

Combination of the estimate (44) and the equation (43) yields the following equation for ǫ

γǫ̇ = −λNǫ−
DNcN
h

ǫ1+δ. (45)

We can immediately discard negative eigenvalues λN , as they lead to ǫ which does not tend to zero;

such ǫ violates our previous assumptions about the boundary layer.

The only viable solutions are those with λN ≥ 0, which leads to two further cases. When λN > 0

the non-linear term is of higher order and can be discarded for s large enough leading to

ǫ(s) = ǫ0 e
−λN

γ
s for λN > 0 (46)
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∂yfinn(y, s)

∂yfout(y, s)

FIG. 2. A snapshot at s = 13 of a numerical solution f(y, s) (in dimension d = 8) compared to an

approximation via inner and outer solutions combined into f1(y, s) (cf. definition (42)). The inner solution,

finn(y, s), is a good approximation for y ≪ 1, while the outer solution, fout(y, s), is a good approximation

when f(y, s) is close to π/2. Both solutions coincide near a point y = K = 10−1.

with ǫ(0) depending on initial data. On the other hand, when λN = 0 the non-linear term becomes

the leading order term resulting in

ǫ(s) =
CN

(s− s0)
1

δ

, CN =

(

hγ

cN DN δ

)
1

δ

for λN = 0. (47)

We can now relate the blow-up rate R(t) with ǫ via

R(t) =
1

supr≥0|∂ru(r, t)|
= Cs

√
T − t ǫ(s), Cs =

1

supξ≥0|dU
∗

dξ (ξ)|
. (48)

If we combine (48), (46) and (47), and solve the conditions λN > 0 and λN = 0 for N we get the

following blow-up rates

RN (t) = Csǫ0(T − t)
1

2
+βN for

d > 2 + k(2 + 2
√
2)

N >
1

4
(d− 2− ω)

(49)



15

RN (t) =
CsCN (T − t)

1

2

(− log(T − t)− s0)
1

δ

for
d > 2 + k(2 + 2

√
2)

N =
1

4
(d− 2− ω),

(50)

with βN > 0

βN = −1

2
+

2N

d− 2− ω
, ω =

√

(d− 2(k + 1))2 − 8k2 (51)

and δ > 0 being equal to

δ = min(ω, d − 2− ω). (52)

Approximation of the coupling term

According to the assumed form of the global solution fN (y, s) we can approximate the solution

ψ in the intervals y ≤ K and y > K separately. Therefore, we split the integral 〈F (ψ), φn〉 into

〈F (ψ), φn〉 =
(
∫ K

0
+

∫ ∞

K

)

F (ψ)φn(y)y
d−1e−y2/4 dy = Iinn + Iout.

We compute the two integrals Iinn and Iout and compare them to see which one gives the leading

order contribution. Our analysis leads to two qualitatively different approximations of the non-linear

term

F (ψ) =
k(d+ k − 2)

2y2
(sin(2ψ) − 2ψ)

depending on the choice of d and k.

The first integral, Iinn, contains the contribution from the inner layer, where ψ ≈ finn−π/2, so

by (35) we can approximate F (ψ) as

F (ψ) = F (finn(y, s)− π/2) = F (U∗(y/ǫ)− π/2) = y−2g(y/ǫ),

for brevity we use a notation

g(ξ) =
k(d+ k − 2)

2
(sin(2U∗(ξ)− π)− (2U∗(ξ)− π)).

When y < K ≪ 1 we can replace the eigenfunction and the weight φn(y) y
d−1e−y2/4 with its leading

order term φn(y) y
d−1e−y2/4 = cny

−γ+d−1(1 + O(y2)). We finally arrive at a simplified version of

the integral Iinn

Iinn ≈ cn

∫ K

0
g(y/ǫ)yd−3−γ dy = cnǫ

d−2−γ

∫ K/ǫ

0
g(ξ)ξd−3−γ dξ. (53)
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The upper bound K/ǫ in (53) tends to infinity as s→ ∞, so it is reasonable to check whether the

integrand is divergent or convergent as ξ → ∞. To this end we have to compute the asymptotic

behavior of g(ξ) at infinity. This can be done by using the asymptotic of U∗, as given by (24)

g(ξ) ≈ −2k(d+ k − 2)

3
(U∗(ξ)− π/2)3 ≈ 2k(d+ k − 2)h3

3
ξ−3γ as ξ → ∞

The leading order of the integrand is thus ξd−3−4γ . By definitions (25) of γ and ω there holds

d− 2− γ = γ + ω, (54)

so the leading order term can be written as ξd−3−4γ = ξω−2γ−1.

We have to consider two cases, because the integral (53) can be divergent or convergent for large

(K/ǫ) depending on the sign of ω − 2γ. If ω < 2γ, then the integral converges so, by taking the

limit K/ǫ → ∞, we get

Iinn = cnǫ
d−2−γ

∫ K/ǫ

0
g(ξ)ξd−3−γ dξ

= cnǫ
γ+ω

∫ ∞

0
g(ξ)ξd−3−γ dξ.

But when ω > 2γ the integral diverges as (K/ǫ)ω−2γ , so we can replace the integral with its rate of

divergence, in which case the lowest order approximation is

Iinn ≈ 2k(d+ k − 2)h3cn
3

ǫγ+ω

(

K

ǫ

)ω−2γ

=
2k(d+ k − 2)h3cn

3
ǫ3γKω−2γ .

We have to consider two similar cases when dealing with Iout. For Iout, ψ is dominated by its

approximation via a single eigenfunction ψ = − h
cN
ǫγφN , which, together with y > K, results in

|ψ| ≪ 1 near the origin. So, as the first step to the approximation of Iout we expand F in a Taylor

series around ψ = 0

F (ψ) = F

(

− h

cN
ǫγφN

)

≈ −k(d+ k − 2)

y2
· 3
2

(

− h

cN
ǫγφN

)3

=
2k(d+ k − 2)h3

3y2c3N
ǫ−3γφ3N .

If we use the Taylor expansion in Iout we obtain

Iout =
2k(d+ k − 2)h3

3c3N
ǫ−3γ

∫ ∞

K
φN (y)3φn(y)y

d−3e−
y2

4 dy

which can be either divergent or convergent for small K. Near the origin (y → 0) the leading order

behavior of the integrand is

φN (y)3φn(y)y
d−3e−

y2

4 = (cN )3cn y
d−3−4γ(1 +O(y2)) = (cN )3cn y

ω−2γ−1(1 +O(y2)).
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It is clear, that for ω < 2γ the integral is finite and we can take the limit K → 0, while for ω > 2γ

the integral is divergent and behaves like (cN )3cnK
ω−2γ . These two cases can be expressed as

Iout ≈
2

3
k(d+ k − 2)h3cn ǫ

−3γ Kω−2γ for ω < 2γ,

and

Iout ≈ ǫ−3γ 2k(d+ k − 2)h3

3c3N

∫ ∞

0
φN (y)3φn(y)y

d−3e−
y2

4 dy

= ǫ−3γ Tn

for ω > 2γ.

We are now in a position to compare the contributions from Iinn and Iout

Iinn ∝ ǫγ+ω, Iout ∝ ǫγ+ω
( ǫ

K

)2γ−ω
, for ω < 2γ,

Iinn ∝ ǫ3γKω−2γ , Iout ∝ ǫ3γ , for ω > 2γ.

For sufficiently large times Iinn dominates over Iout when ω < 2γ because the term (ǫ/K)2γ−ω tends

to zero. On the other hand, when ω > 2γ it is the other way around and Iout dominates over Iinn

due to Kω−2γ → 0. These two cases can be written in a unified way as

〈F (ψ), φn〉 ≈ Dnǫ
γ+δ, δ = min(2γ, ω). (55)

with a constant

Dn =











cn
∫∞
0 g(ξ)ξd−3−γ dξ for ω < 2γ

2(d−1)h3

3c3N

∫∞
0 φN (y)3φn(y)y

d−3e−
y2

4 dy for ω > 2γ .

We intentionally avoided the case ω = 2γ, for which both integrals diverge logarithmically. This

happens only for a non integer dimension d = 2
3

(

7 + 2
√
7
)

≈ 8.194 . . . , which we can exclude as

incompatible with underlying geometric setting of the heat flow for harmonic maps.

One possible interpretation of this phenomenon-is a change of the way we should approximate

the non-linear term F (ψ) before the projection onto φn. For example, when ω > 2γ, we can safely

replace F (ψ) with its Taylor expansion near ψ = 0, i.e. F (ψ) = 2k(d+k−2)
3y2

ψ3. Projecting F (ψ)

back to φn gives negligible contribution from Iinn and significantly larger contribution from Iout.

At the same time, the value of Iout is proportional to the third power of amplitude of ψ ∝ aN :

Iout ∝ ǫ3γ ∝ a3N .

As for the other case, ω < 2γ, the contribution from the Taylor expansion is subdominant.

Instead, a very small region y < K, of a diminishing size, governs the leading order behavior of
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non-linear term F (ψ). We can replicate this effect by approximating F (ψ) with a Dirac delta:

F (ψ) = Gǫγ+ωδ(y). Indeed, to the leading order we get the same values for projections:

〈F (ψ), φn〉 = Gǫγ+ω〈δ, φn〉 = Gcnǫ
γ+ω.

In fact, replacing the non-linear term F (ψ) with a Dirac delta is the starting point to several

derivations of Type II solutions[13, 14]. On the other hand, the Taylor expansion rarely shows up

in derivations of the blow-up rate.

To verify whether 〈F (ψ), φN 〉 is positive (which is required for solution (47)) it suffices to show

that DN > 0. The first case, when DN = cN
∫∞
0 g(ξ)ξd−3−γ dξ follows from the properties of the

bounding region used in Theorem 1, which guarantees that 0 ≤ U∗(ξ) < π/2, hence g(ξ) > 0;

combined with cn > 0 for every n ≥ 0 we get the result. In the second case the result follows from

the sign of the integrand in

2k(d + k − 2)h3

3c3N
ǫ−3γ

∫ ∞

0
φN (y)4yd−3e−

y2

4 dy > 0.

and from cN > 0.

Note on stability of type II solutions

In this section we address two concerns that arose earlier in the text. The first one is an ex

post validation of our assumption (38) about the dominance of aN over other coefficients an. The

other issue is the stability of fN . It appears that fN is unstable, because there is always a negative

eigenvalue λ0 = −γ/2. To obtain any of the constructed solutions we will have to suppress this

instability by fine tuning of initial data.

With an estimate on the non-linear term 〈F (ψ), φn〉, we can actually solve equations (34) for

an. By plugging (44) into (34) we get linear nonhomogeneous equations

ȧn = −λnan +Dnǫ
γ+δ, n 6= N

which can be explicitly solved by

an(s) = an(0)e
−λns +Dn

∫ s

0
ǫ(q)γ+δe−λn(s−q)dq. (56)

The free parameters an(0) are connected to initial data via

an(0) = 〈ψ, φn〉|s=0. (57)
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Let us start with the coefficients in front of higher eigenfunctions, i.e. n > N . It is enough to

study the limit

lim
s→∞

an(s)

aN (s)
= −cN

h
lim
s→∞

an(0) +Dn

∫ s
0 ǫ(q)

γ+δeλn q dq

eλnsǫ(s)γ

The denominator diverges to infinity, while the numerator either diverges to ±∞ or converges to

a constant. In the latter case the limit is 0, and we are done. If the former is true, we apply

l’Hôpital’s rule to get

lim
s→∞

an(s)

aN (s)
= −cN Dn

h
lim
s→∞

ǫ(s)δ

γǫ̇(s)/ǫ(s) + λn
=

Eq. (45)
−cN Dn

h
lim
s→∞

ǫ(s)δ

(λn − λN )−DN cN ǫ(s)δ/h
= 0.

Hence, without any assumptions on an(0) we have |aN (s)| ≫ |an(s)| for n > N .

For n < N , let us rewrite (56) as

an(s) =

(

an(0) +Dn

∫ ∞

0
ǫ(q)γ+δeλnqdq

)

e−λns −Dn

∫ ∞

s
ǫ(q)γ+δe−λn(s−q)dq. (58)

With elementary calculations and knowledge of ǫ one can show that the integrals in (58) converge

if n < N . The second term in (58) is actually much smaller than aN (s). This is evident when we

apply l’Hôpital’s rule to the limit

lim
s→∞

∫∞
s ǫ(q)γ+δe−λn(s−q)dq

aN (s)
= lim

s→∞

∫∞
s ǫ(q)γ+δeλnqdq

eλnsaN (s)
H
= lim

s→∞

−ǫ(s)γ+δ

ȧN (s) + λnaN (s)
.

We continue with the help of matching condition cNaN (s) = −hǫ(s)γ and equation (45) for ǫ to

obtain

= −cN
h

lim
s→∞

ǫ(s)δ

(λn − λN )−DN cNǫ(s)δ/h
= 0.

In a similar way we can check that for n < N the first term, containing e−λns, is actually much

larger than aN (s). So if we want |aN (s)| ≫ |an(s)| to hold, the coefficient in front of e−λns in (58)

has to be zero. This can be accomplished by selecting particular initial data for which

〈ψ|s=0, φn〉 = an(0) = −Dn

∫ ∞

0
ǫ(q)γ+δeλnqdq 0 ≤ n < N. (59)

If the initial data, ψ|s=0, fulfills the condition (59) the assumption |aN (s)| ≫ |an(s)| does not lead

to a contradiction.

The condition (59) for tthe solution fN imposesN constraints on the initial data. Each constraint

corresponds to one unstable direction along which our solution can diverge from the ansatz fN .

There is, however, one free parameter—the blow-up time T—that we can use to change the values

of coefficients an(0). Any small change T → T + η in blow-up time results in a small change of
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self-similar coordinates (15) y → y − 1
2ηe

sy +O(e2sη2) and s → s − ηes + O(e2sη2). This change

in self-similar coordinates affects the initial data ψ|s=0 so the coefficients an(0) also change. In

particular, the zeroth coefficient becomes

a0(0) → a0(0) − η
〈

∂sψ +
y

2
∂yψ , φ0

〉

s=0
+O(η2).

It should be possible to choose a blow-up time T in such way, that the new a0(0) fulfills the condition

(59). This mechanism removes one of the constraints on initial data so fN has effectively N − 1

unstable directions.

Discussion of the resultsy

In the previous section we analyzed the stability of fN concluding that the solution fN has N−1

unstable directions. On the other hand, N is constrained by the condition λN ≥ 0, or equivalently,

N ≥ 1

4
(d− 2− ω) =

1

4
(d− 2−

√

(d− 2(k + 1))2 − 8k2) (60)

with d > 2+ k(2+ 2
√
2). The right hand side of the inequality (60) depends on k and d and puts a

lower bound on the possible N . In turn, the lower bound on N induces a condition on the existence

of stable fN for a given k. If we take arbitrary k ≥ 1 and d > 2+ k(2+ 2
√
2) we can derive a lower

bound on N

N ≥ 1

4
(d− 2− ω) =

1

4
(d− 2−

√

(d− 2(k + 1))2 − 8k2) >
k

2
, (61)

so the instability of solutions fN increases with topological degree k.

Only a solution with N = 1 can be stable, so from the bound N > k
2 we infer that for k ≥ 2

there are no stable solutions fN . Still, the solutions to (5) are guaranteed to blow up for large class

of initial data. Numerical evidence suggests, that the generic blow-up is self-similar, so there has

to exist at least one self-similar solution to (5) for k ≥ 2. However, to the authors knowledge, in

the literature there are no rigorous results concerning these solutions.

Because (61) is only a lower bound, one can ask if there are any examples of stable solutions.

Stable solutions could exist only for 1-corotational maps, so let us assume that k = 1. The lower

bound on d then becomes d > 2 + k(2 + 2
√
2) = 4 + 2

√
2 ≈ 6.828 . . . , but because dimension d is

an integer we arrive at d ≥ 7. The first eigenvalue λ1 = −γ
2 + 1, which corresponds to the stable

solution, is actually positive for all d ≥ 7 so in this case there exists a stable solution f1. In fact,

numerical evidence suggests, that f1 corresponds to a generic blow-up in dimensions d ≥ 7.
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Existence of a generic type I solution in a form of f1 can be confirmed numerically, although solu-

tions with finite-time singularities present several conceptual difficulties when solved on a computer.

The most significant problem comes from the spatial resolution needed to resolve the shrinking scale

of the boundary layer. We overcome this difficulty by employing a well established numerical method

called a moving mesh, in which a constant number of mesh points is distributed dynamically to

satisfy demands for high mesh density near the singularity, and outside of it. In particular, we

modified [2] an existing implementation [15] of moving mesh algorithm MOVCOL [17]. For an

in-depth description of an application of MOVCOL to solutions with finite time singularity we refer

the reader to a paper on a type II blow-up for chemotaxis aggregation by Budd et al.[5].

For d ≥ 8 the generic blow-up rate is given by

R(t) = Csǫ0(T − t)
1

2
+β1 , β1 = −1

2
+

2

d− 2− ω
, ω =

√

d2 − 8d+ 8. (62)

By definition (8) R(t) is inversely proportional to supr≥0|∂ru(r, t)|, which can be easily obtained

from numerical experiments. In fact, for k = 1 the supremum is always attained at the point r = 0,

so we can replace supr≥0|∂ru(r, t)| with |∂ru(0, t)|. To verify the blow-up rate we study the ratio

∂tru(0, t)

∂ru(0, t)
= −R

′(t)

R(t)
,

which in d ≥ 8 should tend to

∂tru(0, t)

∂ru(0, t)
→

(

1

2
+ β1

)

as tր T.

We compare β1 obtained from numerical experiments with its theoretical value in Figure 3. An

additional test compares the shape of a numerical solution near the origin with the shape of the

function f1 with its respective inner and outer solutions as in Figure 2. This plot captures a solution

at time T − t ≈ 10−5.5.

A more challenging numerical test is to verify the blow-up rate in dimension d = 7. We expect

(cf. equation (9)) the blow-up rate

R(t) =
C
√
T − t

(− log(T − t)− s0)
, C =

(

hγ

c1D1

)

1

supξ≥0|dU
∗

dξ (ξ)|
.

This scenario is significantly more difficult to verify than (62) because in order to see the logarithmic

correction we must get much closer to the blow-up time T . At the same time, the choice of initial

data should only influence the constant s0, but not C. We start with the relation ∂ru(0, t) = 1/R(t),

by which we get

√
T − t ∂ru(0, t) = C (− log(T − t)− s0). (63)
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FIG. 3. The predicted blow-up rate for 1-corotational maps is R(t) = (T − t)
1

2
+β1 with β1 = − 1

2 + 2
d−2−ω

and ω =
√
d2 − 8d+ 8. The figure depicts the comparison between the predicted value of β1 and β1 obtained

from numerical experiment via a relation ∂tru(0,t)
∂ru(0,t)

→
(

1
2 + β1

)

with tր T . In each case the initial data was

u(r, 0) = r.

To test our conjectured blow-up rate we plot the left hand side of (63) against − log(T−t), expecting

to see a linear function after sufficiently long time. The experimental values of C, T and s0 are

displayed in Table I, while the relation (63) is depicted in Figure 4.
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TABLE I. For d = 7 it holds
√
T − t ∂ru(0, t) = C (− log(T − t) − s0), asymptotically as t ր T , with C

independent of initial data. In this table we compare values of C and s0 obtained from fitting the asymptotic

relation to the numerical solution for various initial data. The values of C indeed don’t change significantly

among the tested initial data.

Initial data T C s0

r 0.22913 0.22512 −0.43646

r + sin(r) 0.066835 0.22475 0.45864

r − sin(r) 0.44672 0.22500 −0.11921
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FIG. 4. In dimension d = 7, for a generic blow-up, the rate of blow-up is R(t) = C(− log(T−t)−s0√
T−t

with only

s0 depending on initial data. To verify that the blow-up rate agrees with numerical solution we study the

quantity
√
T − tR(t), which should be a linear function of − log(T − t) with slope independent on initial

data. On the other hand, the shift −C s0, should vary with initial data. In the picture we present results

for initial data u(r, 0) = r and u(r, 0) = r± sin(r), each with its own blow-up time T . The particular values

of blow-up time, slope and shift are shown in table I. The blow-up rate R(t) is given by ∂ru(0, t).

APPENDIX

Existence and asymptotic form of harmonic maps

Theorem 1. For d > 2 + k(2 + 2
√
2), a solution v(x) to equation

v′′(x) + (d− 2)v′(x) + k(d+ k − 2) sin(v) = 0 (64)

subjected to boundary conditions

v(x) = −π + 2e−kx +O(e−3kx), for x→ −∞.

exists and has an asymptotic

v(x) = h+ e
−γx(1 +O(e−2x) +O(e−ωx)), for x→ +∞

where h+ is a strictly negative constant, while γ and ω are defined in (25).

Proof. The proof bases on the analysis of a phase portrait spanned by (v, v′) of autonomous

equation (64) and consists of three steps.

Construction of no-escape region: Let us start by defining the vector field

F (v, v′) = (v′,−(d− 2)v′ − k(d+ k − 2) sin(v)).
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We are interested in a heteroclinic orbit connecting two critical points of F , starting at

(−π, 0) and ending at (0, 0). We construct a trapping region S = {(v, v′) | − k sin(v) ≤ v′ ≤
−γ sin(v),−π < v < 0}, which includes critical points (−π, 0) and (0, 0). No integral curve

of F starting in S can leave S (see Figure 1).

Indeed, if we define n(v) = (−k cos(v), 1) as a normal vector to a curve v′ = −k sin(v),
pointing inward of S, by a direct computation we get

F (v,−k sin(v)) · n(v) = −k2 sin(v)(1 − cos(v))

which is positive for −π < v < 0. Similarly, taking a normal vector n(v) = (−γ cos(v),−1)

(again directed inward S) to a curve v′ = −γ sin(v) gives

F (v,−γ sin(v)) · n(v) = −γ2 sin(v)(1 − cos(v))

which is also positive for −π < v < 0. Therefore, the vector field F points inward on the

whole boundary of S (excluding the stationary points (0, 0) and (−π, 0)). This implies that

any integral curve of F starting inside S must stay in S.

Asymptotic of solutions starting in S: There are two stationary points in S where a solution

can end up. The first one, (−π, 0), can be ruled out because inside S vector field F has a

nonzero horizontal component pointing to the right. The remaining stationary point, (0, 0),

gives a general asymptotic for of v as

v(x) = 2h+ · exµ+(1 +O(e−2x)) + 2h− · exµ−(1 +O(e−2x)) (65)

where µ± < 0 are eigenvalues of ∇F (0, 0)

µ+ = −γ, µ− = −γ − ω. (66)

At this point, h− and h+ are constants depending on initial data and there are no restrictions

on their values. Because (v, v′) ∈ S, we have v′ < −γ sin(v) < −γv. If we combine the latter

inequality with the asymptotic form of v, we get

− ωh− · (1 +O(e−2x)) < 0. (67)

On the other hand, from v < 0 we know that h− · (1 +O(e−2x)) < 0. This contradicts with

ω > 0, so h+ 6= 0. We can again use v < 0, this time with leading order term proportional

to h+, to get h+ < 0.
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Boundary conditions in the thesis guarantee (v, v′) ∈ S: When x→ −∞ the solution v with

initial conditions v(x) = −π + 2ekx +O(e3kx) can be expanded as a Taylor series in ex in a

following way

v(x) = −π + 2ekx − 2(d + k − 2)

3(d+ 4k − 2)
e3kx +O(e5kx)

It is a matter of routine computation to show that for sufficiently small x we have

−k sin(v(x)) < v′(x) < −γ sin(v(x)). (68)

So (v, v′) ∈ S and v has an asymptotic form of (65) with h+ < 0. �
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