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1 Introduction

The goal of this paper is to present a methodology for proving KAM-type theorems without the assumption of the
classical diophantine condition. Instead of it we base our reasoning only on finite approximation of the associated
frequency ω and an arithmetic Khintchine - Lévy condition, which we prove to be generic in the sense of measure
theory. In other words we give (a lower bound for) the admissible perturbation threshold which depends only on
the approximation of the frequency ω appearing in the problem provided that ω does not belong to a set of small
measure.

The proofs are constructive in the sense that for concrete systems one can retrieve numerical values of the
quantities involved. We emphasize that all the constants appearing in all our theorems and lemmas (whether they
concern diophantine approximation, probability or dynamics) are explicitly computed and of numerically reasonable
size. This way our techniques can be applied in computer assisted proofs.

We demonstrate our approach using one of the least complicated small divisors problems - the problem of
analytic rectification of a small perturbation of a constant vector field on the two-dimensional torus. In our method
we follow the Kolmogorov-Newton iterative scheme. Specifically we ask under what conditions we can transform
the equation {

ẋ = 1 + a∗(x, y)

ẏ = ω + a∗∗(x, y)
(1)

(here a = (a∗, a∗∗) is a small function and x, y ∈ S1) to the equation{
Ẋ = 1

Ẏ = ω
(2)

by means of an analytic, close to identity change of variables (x, y) 7→ (X,Y ). In our method we follow the
Kolmogorov-Newton iterative scheme. The key ingredient is an estimate on the size of the solution of the homological
equation, which we obtain by a careful analysis of the small divisors.

Assuming an arithmetic condition on ω is, of course, inevitable as the denominators appearing in the problem
(in our case |qω − p| for integers p and q) can be arbitrarily close to zero. However, for a majority of indices (p, q)
the size of the denominators can be controlled. The Khintchine - Lévy arithmetic condition, which we introduce
deals with the remaining ones, which are related to pn/qn - the continued fraction convergents to ω - by assuming
a certain growth rate of the sequence qn.

Historically KAM theory originates from papers of Kolmogorov, Arnol’d and Moser ([17, 1, 2, 22]), who showed
that invariant tori which appear naturally in integrable Hamiltonian systems persist sufficiently small perturbations
of these systems under the assumption of two conditions: the geometric twist condition and a number-theoretic
diophantine condition on the frequencies of the investigated torus. Fundamental questions which arise in the context
of these theorems involve the maximal size of perturbation admissible by their assumptions, its dependence on the
frequencies of the torus and the structure (and in particular measure) of the set of these frequencies, for which the
results can be applied.

The aforementioned seminal papers did not, however, answer these questions of quantitative nature, instead
their authors focused mainly on providing conditions, which ensure the validity of the theorems for undetermined,
sufficiently small perturbation sizes. Since then only a fraction of papers on KAM theory concentrated on its
quantitative aspect and only partial results in this area are available. First progress has been done by Rüssmann
([25, 26]), who improved the estimates on the solution of the homological equation (in the case of diophantine
frequency vectors), which resulted in a better lower bound of the admissible perturbation size. Later Herman in
[14] gave a lower estimate in the case of a very special rotation number and a very special transformation: the
golden mean circle in the Chirikov standard map. This has been improved - using computer assisted methods - by
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de la Llave and Rana and Celletti and Chierchia ([13, 12, 6, 7]). We should also mention the paper [9] in which from
this perspective the Siegel center problem has been analyzed as well as [11] in which the authors develop methods
applicable to any Hamiltonian system, not necessarily a close to integrable one.

The aforementioned Siegel problem ([29]) has also been investigated by Yoccoz, Marmi, Buff and Chéritat. Yoc-
coz proved that in the quadratic polynomial case the necessary and sufficient condition for linearizing a perturbation
of a rotation in the complex plane is the convergence of the Brjuno function of the associated frequency. Buff and
Cheritat went further proving there is a close connection between the Brjuno function and the radius of convergence
of the change of variables in the Siegel problem. In the context of Hamiltonian systems the Brjuno function has
been studied by Rüssmann ([27]) and measure-theoretic aspects of KAM theory have been investigated by Pöschel
([24]) and since his results no new methods concerning this problem have been invented.

A survey of history and results of the theory of small divisors may be found in [10] and [5] in the context of
Hamiltonian systems and in [30, 8, 31, 19] and [20] in the context of the Siegel problem and Brjuno function.

In our paper we do not deal with the classical diophantine condition, instead we concentrate on the continued
fraction expansion of the frequency involved. We do not, however, look at ω pointwise, but globally - we use the
statistical properties of the continued fraction transformation. The Khintchine-Lévy condition is motivated by the
theorem on the Khintchine-Lévy constant (theorem 2.1, [18]). This result allows us to expect that even though
the growth rate of the sequence (qn) and other similar sequences can be arbitrarily fast, the typical behavior - in
the sense of measure theory - is exponential growth. The original paper of Lévy, however, concerns only pointwise
a.e. convergence to a constant of the sequence n

√
qn and it lacks quantitative nature. This has been improved in

i.e. [15, 23] and [21] to a central limit theorem, law of the iterated logarithm and a Berry-Esséen type bound (a
large deviations result). In our paper we use large deviations theorems specifically tailored for our needs to obtain
estimates of the measure of the set of numbers verifying the Khintchine-Lévy condition.

The paper is organized as follows. In section 2 we state our results after introducing all the necessary tools.
In section 3 we prove a lemma on diophantine approximation, which allows us to deal with the “medium-size”
denominators. Using these results in section 4 we analyze our main object of investigation - the homological
equation. Finally section 5 contains estimates of the measure of the Khintchine-Lévy set.

2 Tools, result and consequences

We will be working with irrational numbers, but since we would like them to constitute a probability space we will
restrict our attention to the set X := (0, 1) \ Q. For a set A ⊂ X we denote its complement X \ A as Ac. The
σ-algebra of sets in use will be the family of Lebesgue measurable sets and by λ we denote the Lebesgue measure
on X. We will also need the Gauss measure γ given by

γ(B) :=
1

log 2

∫
B

dλ(x)

1 + x
. (3)

These two measures are absolutely continuous with respect to one another. The term “almost all” will mean “λ-
almost all” when used with respect to elements of X and “all except for a finite number” when refered to sets of
indices, in particular the integers or natural numbers. The symbol Eµ will denote the expected value of a random
variable with respect to a measure µ.

Let Y be a random variable defined on a probability space (Y,Σ, µ). Denote by FY its distribution function, i.e.

FY (x) = µ(Y < x) = µ(Y −1((−∞, x))) (4)

and by fY the characteristic function of Y :

fY (t) = Eµ exp(itY ). (5)

3



It is a well known fact that the moments of Y and derivatives of fY at zero are related by

EµY ν =
1

iν
dν

dtν
fY (t)

∣∣∣
t=0

(6)

We define the cumulants of Y (with respect to µ) as

Γk(Y ) =
1

ik
dk

dtk
(log fY (t))

∣∣∣
t=0

. (7)

For a fixed real number ω we denote by [a0; a1, a2, . . .] its continued fraction expansion:

ω = [a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

, (8)

Here aj = aj(ω) are positive integers, we will refer to them as partial quotients of ω.
On [0, 1), where a0 = 0 we will often write [a1, a2, . . .] instead of [0; a1, a2, . . .]. There the shift on the continued

fraction expansion is given by the Gauss map G : X 7→ X:

G(ω) = G([a1, a2, . . .]) = [a2, a3, . . .] =

{
1

ω

}
. (9)

Here {·} denotes the fractional part (we will also use b·c and d·e for floor and ceiling functions, respectively). The
Gauss map has two properties, which will be essential for us: it leaves the Gauss measure γ invariant and it is
ergodic with respect to that measure.

By pn
qn

, where pn and qn are coprime integers, we denote the number

pn

qn
= [a0; a1, . . . , an] = a0 +

1

a1 +
1

. . . +
1

an

, (10)

which we call the n-th convergent to ω. We will also need the complete quotiens xn defined by:

xn(ω) = [an; an+1, an+2, . . .] =
1

Gn−1(ω − a0)
(11)

as well as the approximation errors ηn:
ηn = |qnω − pn|. (12)

The following lemma collects some textbook results on continued fractions. We will often use them silently
furtheron.

Lemma 2.1. For any irrational ω the following relations are satisfied:

qn = anqn−1 + qn−2, n > 0; q−2 = 1, q−1 = 0, (13)

pn = anpn−1 + pn−2, n > 0; p−2 = 0, p−1 = 1, (14)
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ηn = ηn−2 − anηn−1, n > 0; η−2 = ω, η−1 = 1, (15)

ηn = (−1)n(qnω − pn), n > −2; (16)

xn =
ηn−2

ηn−1
, n > 0; (17)

x1x2 . . . xn = η−1
n−1, n > 1; (18)

1

qn+1 + qn
< |qnω − pn| <

1

qn+1
, n > 0. (19)

The convergents pn/qn will be important for us, since they are the best rational approximations to ω and they
give rise to the smallest of the small divisors.

Lemma 2.2. If pn
qn

is a convergent to an irrational number ω the following inequality holds for all p and all q < qn:

|qω − p| > |qnω − pn|. (20)

The numerators and denominators of the convergents, however, are not the only indices, which are critical from
the point of view of KAM theory. Among them are also the ones introduced in the following definition, which will
be justified in section 3.

Definition 2.1. Let ω be an irrational number. We define the sets of

• initial denominators of ω
ID = {1, . . . , a1}, (21)

• true denominators of ω
TD = {qn, where n > 2}, (22)

• semidenominators of ω

SD = {aqn−1 + qn−2, where a ∈ {1, . . . , an − 1} and n > 2}, (23)

• cosemidenominators of ω

CSD = {aqn−1, where a ∈ {2, . . . , an} and n > 2}. (24)

The sets ID, TD, SD and CSD are pairwise disjoint.
By ` we understand the logarithm of the Khintchine-Lévy constant (or the Khintchine-Lévy constant itself,

depending on the convention), that is ` := π2

12 log 2 . Its importance is demonstrated in the following

Theorem 2.1 (Khintchine-Lévy theorem, [18]). The sequence 1
n log qn(ω) tends to ` for almost every ω ∈ X.

In view of the above result it is reasonable to assume that on a big set of numbers ω the growth rate of qn(ω)
could be bounded from above by a sequence only slightly faster than e`n and similarly from below by a slightly
slower sequence. This justifies the following definition and will be made precise in section 5.

Definition 2.2. We say that an irrational number ω satisfies the upper Khintchine-Lévy condition with constants
T > 0 and N ∈ N (or simply is (T,N)-upper-Khintchine-Lévy) if the following inequality holds for all n > N :

qn(ω) 6 e(`+T )n. (25)
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We denote the set of (T,N)-upper-Khintchine-Lévy numbers by KL+(T,N). Analogously we define the lower
Khintchine-Lévy set by

KL−(T,N) =

{
ω ∈ X :

1

2
e(`−T )n 6 qn(ω) for all n > N

}
. (26)

By KL(T−, T+, N) we will understand the intersection of KL+(T+, N) and KL−(T−, N) and we will write KL(T,N)
for KL(T, T,N).

The role of the 1/2 in the definition of KL−(T,N) is purely technical and will become clear in section 5. Also,
for a given natural number n, we denote by KL+

n (T ) the set {ω ∈ X : qn(ω) 6 e(`+T )n} and similarly for KL−

(with the 1/2 factor) and KL. This way

KL◦(T,N) =

∞⋂
n=N

KL◦n(T ) (27)

with ◦ ∈ {+,−, }.

Remark 2.3. In the case when T− > `−log 1+
√

5
2 ≈ 0.705 the set KL−(T−, N)c is empty for all N , as the continued

fraction denominators are bounded from below by the Fibonacci sequence for all numbers ω.

The main object of study of the remaining part of this paper will be the following linear PDE, called the
homological equation:

(∂x + ω∂y)h(x, y) = a(x, y), (HOM)

where h is the unknown, a is given and both of them are real-valued maps with domain R2, which are 2π-periodic
in both x and y directions. This periodicity allows us (after imposing some mild regularity conditions) to write a
and h as Fourier series:

a(x, y) =
∑
l∈Z2

ale
i(l1x+l2y), (28)

h(x, y) =
∑
l∈Z2

hle
i(l1x+l2y), (29)

on which we impose a reality condition ·̄l = ·−l. Using expansions (28) and (29) it is not hard to see that hl’s need
to satisfy

hl =
al

i(l1 + ωl2)
. (30)

First we have to make sure we are not dividing by zero, which is the case only if l1 = l2 = 0 when ω is irrational. To
achieve this we must only work with a’s for which a0, their mean value, is equal to zero. However, this restriction
leaves us with the possibility to choose the value of h0, for simplicity we will always choose h0 = 0.

To be more specific, we will be working in an analytic setting. First let us define the (scale of) space(s) which
we will make use of. Let ρ be a positive real number. We set

Π(ρ) := {z ∈ C : |Im z| 6 ρ}, (31)

and

Pρ := {f : Π(ρ)2 7→ C : f is analytic in int Π(ρ)2, continuous, 2π-periodic in both directions and f(R2) ⊂ R}.
(32)
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On Pρ we use the standard sup-norm:
||f ||ρ := sup

x,y∈Π(ρ)

|f(x, y)|. (33)

For a multiindex (l1, l2) = l ∈ Z2 we will denote by |l| its `1 norm, namely |l| = |l1|+ |l2|. The symbol S∗, where S
is a set of indices over which some sum is taken, means simply S \ {0}.

The main result of this paper is the following

Theorem 2.2. Suppose ω ∈ KL(T−, T+, N) for some T−, T+ > 0 and N ∈ N∗ and that a is a zero-average function
in Pρ for some ρ > 0. Then the homological equation (HOM) has a unique zero-average solution h, which belongs
to Pρ−δ for any 0 < δ < ρ and

||h||ρ−δ||a||−1
ρ 6

9π

2
Cδ−1 + 2S + 2S′ + eδe`+T+ [D1(δ) +D2(δ) +D3(δ)] δ−L + brj(N)

ω − (S1 + S2 + S3), (34)

where

C = max

{
2,

1

dωe − ω

}
, (35)

L =
`+ T+

`− T−
, (36)

S =

a1∑
q=1

e−(q+qa0+1)δ

|qω − qa0 − 1|
, (37)

S′ =

a1∑
q=1

e−q(1+a0)δ

q|ω − a0|
, (38)

D1(δ) = 2LΓ(L) + (2L)Le−1/4L, (39)

D2(δ) =
log 2 + `+ T+

log 2

[
Γ(L) · 2L

(
1 + e−(`−T−)

)L
+ (2L)Le−(1+e−(`−T−))/4L

]
+ (40)

+
T+ − T−

log 2

[
2L

(`− T−)2
(
1 + e−(`+T+)

)L (Γ′(L) + Γ(L) log
2

1 + e−(`+T+)
+ Γ(L) log

1

(1 + ω)δ

)]
, (41)

D3(δ) = Γ(L) log 2 + LLe−1/2L log 2 +
T+ − T−
(`− T−)2

Γ′(L) +
T+ − T−
(`− T−)2

Γ(L) log
1

(1 + ω)δ
, (42)

S1 =

N−1∑
n=1

e(`+T+)n exp

(
−1

2
e(`−T−)n(1 + ω)δ

)
, (43)

S2 =
1

log 2

N−1∑
n=1

e(`+T+)n exp

(
−1

2
(1 + ωδ

(
1 + e−(`−T−)

)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n] , (44)

S3 =

N−1∑
n=1

e(`+T+)(n+1) exp
(
−(1 + ω)δe(`−T−)n

)
[log 2 + (T+ − T−)n], (45)

brj(N)
ω is given in definition 4.3 and Γ is the Euler Γ function.

Observe that the bound in theorem 2.2 is O(δ−L log δ−1). This allows us to perform the Kolmogorov-Newton
iterative scheme - we give a sketch of the procedure below.
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We consider a perturbation of the constant vector field (1, ω) on the 2-torus:{
ẋ = 1 + a∗(x, y)

ẏ = ω + a∗∗(x, y)
, (46)

where a∗ and a∗∗ are 2π-periodic in x and y and they extend to analytic functions on Π(ρ∗)×Π(ρ∗∗). Additionally
assume that their averages are equal to 0 and div a = 0 (where a = (a∗, a∗∗)), which makes our perturbation
Hamiltonian. We will be looking for a measure-preserving (symplectic) coordinate change (x, y) 7→ (X,Y ), where{

X = x+ h∗(x, y)

Y = y + h∗∗(x, y)
(47)

and {
X = x+ g∗(x, Y )

y = Y + g∗∗(x, Y )
(48)

We will use the second, implicit definition more often by analogy with the generating function method for defining
symplectic transformations. Observe also that to require that (x, y) 7→ (X,Y ) is measure preserving is the same as
requiring that div g = 0 (with g = (g∗, g∗∗)). Let us now calculate the perturbation in these new coordinates. We
want to obtain {

Ẋ = 1 + â∗(X,Y )

Ẏ = ω + â∗∗(X,Y )
. (49)

with ||â|| = O(||a||2). We have {
Ẋ = ẋ+ ẋ∂xg

∗(x, Y ) + Ẏ ∂Y g
∗(x, Y )

ẏ = Ẏ + ẋ∂xg
∗∗(x, Y ) + Ẏ ∂Y g

∗∗(x, Y )
(50){

1 + â∗(X,Y ) = 1 + a∗(x, y) + (1 + a∗(x, y))∂xg
∗(x, Y ) + (ω + â∗∗(X,Y ))∂Y g

∗(x, Y )

ω + a∗∗(x, y) = ω + â∗∗(X,Y ) + (1 + a∗(x, y))∂xg
∗∗(x, Y ) + (ω + â∗∗(X,Y ))∂Y g

∗∗(x, Y )
(51){

â∗(X,Y ) = a∗(x, y) + (∂x + ω∂Y )g∗(x, Y ) + a∗(x, y)∂xg
∗(x, Y ) + â∗∗(X,Y )∂Y g

∗(x, Y )

a∗∗(x, y) = â∗∗(X,Y ) + (∂x + ω∂Y )g∗∗(x, Y ) + a∗(x, y)∂xg
∗∗(x, Y ) + â∗∗(X,Y )∂Y g

∗∗(x, Y )
(52)â

∗(X,Y ) = a∗(x, y)− a∗(x, Y ) + a∗(x, Y ) + (∂x + ω∂Y )g∗(x, Y ) + a∗(x, y)∂xg
∗(x, Y ) + â∗∗(X,Y )∂Y g

∗(x, Y )

−â∗∗(X,Y ) =
−a∗∗(x, y) + a∗∗(x, Y )− a∗∗(x, Y ) + (∂x + ω∂Y )g∗∗(x, Y ) + a∗(x, y)∂xg

∗∗(x, Y )

1 + ∂Y g∗(x, Y )
(53)

Now assume that g∗ and g∗∗ solve the homological equations with initial data −a∗ and a∗∗, respectively. Equation
(53) becomes {

â∗(X,Y ) = a∗(x, y)− a∗(x, Y ) + a∗(x, y)∂xg
∗(x, Y ) + â∗∗(X,Y )∂Y g

∗(x, Y )

−â∗∗(X,Y ) = [−a∗∗(x, y) + a∗∗(x, Y ) + a∗(x, y)∂xg
∗∗(x, Y )] · (1 + ∂Y g

∗(x, Y ))
−1 (54){

â∗(X,Y ) = a∗(x, Y + g∗∗(x, Y ))− a∗(x, Y ) + a∗(x, Y + g∗∗(x, Y ))∂xg
∗(x, Y ) + â∗∗(X,Y )∂Y g

∗(x, Y )

−â∗∗(X,Y ) = [−a∗∗(x, Y + g∗∗(x, Y )) + a∗∗(x, Y ) + a∗(x, Y + g∗∗(x, Y ))∂xg
∗∗(x, Y )] · (1 + ∂Y g

∗(x, Y ))
−1

(55)
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For a function b : Π(R∗)×Π(R∗∗) 3 (ξ, η) 7→ b(ξ, η) ∈ C define

||b||R∗,R∗∗ = sup
(ξ,η)∈Π(R∗)×Π(R∗∗)

|b(ξ, η)|. (56)

We have the Cauchy estimates:

||∂ξb||R∗−µ,R∗∗ 6 µ−1||b||R∗,R∗∗ , (57)

||∂ηb||R∗,R∗∗−ν 6 ν−1||b||R∗,R∗∗ . (58)

Assume additionally that the following estimates hold for all δ and some function Γ:

||v||R∗−δ,R∗∗−δ 6 Γ(δ)||b||R∗,R∗∗ , (59)

where v is the solution of the homological equation with initial data b.
For a moment fix a δ > 0 and assume R∗ < ρ∗ − δ and R∗∗ < ρ∗∗ − δ. Define

β∗ = Γ(δ)||a∗||ρ∗,ρ∗∗ (60)

and
β∗∗ = Γ(δ)||a∗∗||ρ∗,ρ∗∗ . (61)

Observe, that if (x, Y ) ∈ Π(R∗)×Π(R∗∗) then

|X − x| 6 ||g∗||R∗,R∗∗ 6 β∗ (62)

and similarily
|y − Y | 6 ||g∗∗||R∗,R∗∗ 6 β∗∗. (63)

Thus if X ∈ Π(r − β∗) then x ∈ Π(r), whenever r − β∗ < ρ∗ − δ. This in turn tells us that the supremum of some
quantity depending on X and Y taken over (X,Y ) ∈ Π(R∗ − β∗) × Π(R∗∗) is smaller than the supremum of this
quantity written in terms of x and Y , which is taken over (x, Y ) ∈ Π(R∗)×Π(R∗∗) (provided that R∗−β∗ < ρ∗− δ
and R∗∗ < ρ∗∗ − δ).

We now make an attempt to estimate the supremum of −â∗∗(X,Y ) on the strip

Π(ρ∗ − δ − β∗, ρ∗∗ −max{δ + µ, δ + ν, ν + β∗∗}). (64)

In order to shorten notation we write
sup
ξ:R∗

η:R∗∗

for sup
(ξ,η)∈Π(R∗)×Π(R∗∗)

. (65)

We have
sup

X:ρ∗−δ−β∗
Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|â∗∗(X,Y )| 6 (I∗∗ + II∗∗) · III∗∗, (66)

where

I∗∗ := sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|a∗∗(x, Y + g∗∗(x, Y ))− a∗∗(x, Y )|, (67)

II∗∗ := sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|a∗(x, Y + g∗∗(x, Y )) · ∂xg∗∗(x, Y )|, (68)
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III∗∗ := sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|1 + ∂Y g
∗(x, Y )|−1. (69)

We estimate I∗∗, II∗∗ and III∗∗ separately.

I∗∗ 6 sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

(
|g∗∗(x, Y )| · sup

η∈[0,g∗∗(x,Y )]

|∂Y a∗∗(x, Y + η)|

)
6 (70)

6

 sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|g∗∗(x, Y )|

 ·
 sup

x:ρ∗−δ
Y :ρ∗∗−max{δ+µ−β∗∗,δ+ν−β∗∗,ν}

|∂Y a∗∗(x, Y )|

 6 (71)

6 Γ(δ)||a∗∗||ρ∗,ρ∗∗ · ν−1||a∗∗||ρ∗,ρ∗∗ = ν−1Γ(δ)||a∗∗||2ρ∗,ρ∗∗ , (72)

II∗∗ 6

 sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ−β∗∗,δ+ν−β∗∗,ν}

|a∗(x, Y )|

 · µ−1

 sup
x:ρ∗−δ

Y :ρ∗∗−max{δ,δ+ν−µ,ν+β∗∗−µ}

|g∗∗(x, Y )|

 6 (73)

6 µ−1Γ(δ)||a∗||ρ∗,ρ∗∗ ||a∗∗||ρ∗,ρ∗∗ , (74)

III∗∗ 6 sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

(1− |∂Y g∗(x, Y )|)−1 6
(
1− ν−1Γ(δ)||a∗||ρ∗,ρ∗∗

)−1
(75)

Using the above we can now estimate the supremum of â∗(X,Y ) over the same set:

sup
X:ρ∗−δ−β∗

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|â∗(X,Y )| 6 I∗ + II∗ + III∗, (76)

where

I∗ :=

 sup
X:ρ∗−δ−β∗

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|â∗∗(X,Y )|

 ·
 sup

x:ρ∗−δ
Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|∂Y g∗(x, Y )|

 , (77)

II∗ := sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|a∗(x, Y + g∗∗(x, Y ))− a∗(x, Y )|, (78)

III∗ := sup
x:ρ∗−δ

Y :ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}

|a∗(x, Y + g∗∗(x, Y )) · ∂xg∗(x, Y )|. (79)

Using similar techniques we obtain

I∗ 6
ν−1Γ(δ)2||a∗||ρ∗,ρ∗∗ ||a∗∗||ρ∗,ρ∗∗(µ−1||a∗||ρ∗,ρ∗∗ + ν−1||a∗∗||ρ∗,ρ∗∗)

1− ν−1Γ(δ)||a∗||ρ∗,ρ∗∗
, (80)

II∗ 6 ν−1Γ(δ)||a∗||ρ∗,ρ∗∗ ||a∗∗||ρ∗,ρ∗∗ , (81)

III∗ 6 µ−1Γ(δ)||a∗||2ρ∗,ρ∗∗ . (82)

Set µ = ν and denote

||â||ρ̂∗,ρ̂∗∗ = ||â∗||ρ∗−δ−β∗,ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗} + ||â∗∗||ρ∗−δ−β∗,ρ∗∗−max{δ+µ,δ+ν,ν+β∗∗}, (83)
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||a||ρ∗,ρ∗∗ = ||a∗||ρ∗,ρ∗∗ + ||a∗∗||ρ∗,ρ∗∗ (84)

and
T := µ−1Γ(δ)||a||ρ∗,ρ∗∗ . (85)

We have

||â||ρ̂∗,ρ̂∗∗ 6 (I∗∗ + II∗∗) · III∗∗ + I∗ + II∗ + III∗ 6 µ−1Γ(δ)||a||2ρ∗,ρ∗∗ ·
(

1 +
1

2

T

1− T

)
. (86)

We have thus obtained quadratic estimates of the new error multiplied by terms coming from the Cauchy
estimates and the estimates in the homological equation. We do not include the rest of the procedure here, as it is
the same as in most papers on KAM theory. The fact that when ω is a Khintchine-Lévy number we have

Γ(δ) = O(δ−L log δ−1) (87)

allows us to perform it, as the bad estimates caused by solving the homological equation and the Cauchy estimates
are eventually killed by the quadraticity of the method. All we need to do is to choose δ and µ in a proper way at
each step of the iterative scheme.

3 A diophantine approximation lemma

3.1 Computing bqωc and dqωe
Our goal in this section is to obtain a diophantine approximation theorem, that is to get a lower bound on the
quantity |qω − p| in terms of q. First we will show that this quantity is expressible in terms of ηn’s. For this we
compute the p for which |qω − p| attains its least value for a given q, that is we compute both bqωc and dqωe. To
do this we first introduce a coding of natural numbers into finite sequences of natural numbers with respect to a
given sequence satisfying a recursive relation of the form (13). Given such a sequence (qn)∞n=0 we construct a finite
sequence associated to a number q using the following procedure:

1. Find n such that qn−1 < q 6 qn.

2. Subtract kn−1qn−1 from qn, where kn−1 is the maximal number for which the result r1 is still greater or equal
than q. The number kn−1 satisfies 0 6 kn−1 6 an − 1.

3. Subtract kn−2qn−2 from r1, where kn−2 is the maximal number for which the result r2 is still greater or equal
than q. The number kn−2 satisfies 0 6 kn−2 6 an−1.

. . .

n. Subtract k1q1 from rn−2, where k1 is the maximal number for which the result rn−1 is still greater or equal
than q. The number k1 satisfies 0 6 k1 6 a2.

n+ 1. Subtract k0q0 from rn−1, where k0 is the number rn−1 − q. The number k0 satisfies 0 6 k0 6 a1.

The sequence (n; kn−1, . . . , k0) is the desired address of q. Of course we have

q = qn − (kn−1qn−1 + kn−2qn−2 + . . .+ k1q1 + k0q0). (88)

We define its corresponding p by replacing all the letters q in the above equality by p:

p = pn − (kn−1pn−1 + kn−2pn−2 + . . .+ k1p1 + k0p0). (89)
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Since p is, for a given q, a uniquely defined number we will sometimes refer to it as p(q):

p(q) = p = pn − (kn−1pn−1 + kn−2pn−2 + . . .+ k1p1 + k0p0). (90)

By j(q) we will mean the least index j for which kj is nonzero and if such an index does not exist (i.e. when q = qn)
we define j(q) = n+ 1:

j(q) =

{
min{j : kj 6= 0} if q 6= qn

n+ 1 if q = qn
. (91)

The number j(q) is again uniquely determined, which justifies the notation. We will, however, not limit ourselves
to expansion of q of the form (88) given by the aforementioned procedure. In order to avoid ambiguities in the
remaining part of this section we introduce the following definition.

Definition 3.1. Assume (qn)∞n=0 is a sequence satisfying a recurrence relation of the form (13) for some sequence
(an)∞n=0. Identity of the form (88) will be called an expansion of q if 0 6 km 6 am+1 for m = 0, . . . , n − 2 and
0 6 kn−1 6 an − 1.

In principle different expansions can give rise to different functions p and j, however this is (almost) not the
case.

Lemma 3.1. Both p(q) and (−1)j(q)−1 are independent of the expansion of q.

We will now prove the following

Lemma 3.2. Suppose q is a positive integer with address (n; kn−1, . . . , k0) with respect to the sequence (qn)∞n=0.
Then p(q) = bqωc if j(q) is odd and p(q) = dqωe if j(q) is even.

Before we proceed with the proof, we formulate an obvious corollary:

Corollary 3.3. With the notations of lemma 3.2 we have the following equality of sets:

{p : |qω − p| < 1} = {bqωc, dqωe} = {p(q), p(q) + (−1)j(q)−1}. (92)

Proof of lemma 3.2. To simplify notations we shall, for the course of the proof, replace j(q) with j and p(q) with p.
The claim of the lemma in the case when q = qn follows from the theory of continued fractions, more specifically
from a remark we made earlier that the convergents approach ω in an alternating fashion. To prove the lemma for
q 6= qn it suffices to show that 0 < (−1)j−1(qω− p) < 1. Whenever an expansion of q appears in this proof it is the
canonical expansion constructed at the beginning of this section.

(−1)j−1(qω − p) = (−1)j−1[(qn − (kn−1qn−1 + . . .+ kjqj))ω − (pn − (kn−1pn−1 + . . .+ kjpj))] =

= (−1)j−1[(−1)nηn − ((−1)n−1kn−1ηn−1 + . . .+ (−1)jkjηj)] =

= kjηj − kj+1ηj+1 + . . .+ (−1)n−1−jkn−1ηn−1 + (−1)n−1−jηn.

(93)

We prove the two inequalities separately considering two cases. First, however, we introduce an auxiliary inequality:

ηs − ks+1ηs+1 + (ks+2 − 1)ηs+2 > ηs − as+2ηs+1 + (ks+2 − 1)ηs+2 = ks+2ηs+2 > 0. (94)
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Case 1. The number n− 1− j is even.
Using equality (93) we obtain

(−1)j−1(qω − p) = kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .− kn−2ηn−2 + kn−1ηn−1 + ηn =

= (kj − 1)ηj + ηj − kj+1ηj+1 + (kj+2 − 1)ηj+2 + ηj+2 − kj+3ηj+3 + . . .− kn−2ηn−2+

+ (kn−1 − 1)ηn−1 + ηn−1 + ηn.

(95)

Observe, that the first term in the above sum (kj − 1)ηj is greater or equal than 0 (from the definition of j). Using
this and our auxiliary inequality (94) applied to the splitting above we obtain

(−1)j−1(qω − p) > ηn−1 + ηn > 0. (96)

Using similar techniques we obtain

(−1)j−1(qω − p) = kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .− kn−2ηn−2 + kn−1ηn−1 + ηn 6

6 kjηj + kj+2ηj+2 + . . .+ kn−3ηn−3 + kn−1ηn−1ηn 6

6 aj+1ηj + aj+3ηj+2 + . . .+ an−2ηn−3 + (an − 1)ηn−1 + ηn =

= ηj−1 − ηj+1 + ηj+1 − ηj+3 + . . .+ ηn−4 − ηn−2 + ηn−2 − ηn − ηn−1 + ηn =

= ηj−1 − ηn−1 6 η−1 − ηn−1 = 1− ηn−1 < 1.

(97)

Case 2. The number n− 1− j is odd.
We proceed analogously to case 1 to obtain

(−1)j−1(qω − p) = kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .+ kn−2ηn−2 − kn−1ηn−1 − ηn =

= (kj − 1)ηj + ηj − kj+1ηj+1 + (kj+2 − 1)ηj+2 + ηj+2 − kj+3ηj+3 + . . .+ (kn−2 − 1)ηn−2+

+ ηn−2 − kn−1ηn−1 − ηn > ηn−1 > 0

(98)

and

(−1)j−1(qω − p) = kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .+ kn−2ηn−2 − kn−1ηn−1 − ηn 6

6 kjηj + kj+2ηj+2 + . . .+ kn−4ηn−4 + kn−2ηn−2 6

6 aj+1ηj + aj+3ηj+2 + . . .+ an−3ηn−4 + an−1ηn−2 =

= ηj−1 − ηj+1 + ηj+1 − ηj+3 + . . .+ ηn−5 − ηn−3 + ηn−3 − ηn−1 =

= ηj−1 − ηn−1 6 η−1 − ηn−1 = 1− ηn−1 < 1.

(99)

3.2 A lower bound on |qω − p| for a majority of numbers q

In this section we shall make use of lemma 3.2 to control the size of |qω − p|. The crucial observation here is that
qω − p(q) is a linear combination of ηm’s with coefficients ±km. Using this idea we shall prove the following

Theorem 3.1. Let ω = [a0; a1, a2, . . .] be a positive irrational number and let (qn)∞n=0 denote the sequence of
denominators of convergents to ω. Assume that q > 0 does not belong to ID ∪ TD ∪ SD ∪ CSD and that p is an
integer. Then

|qω − p| > 1

Cq
, (100)
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where

C = max

{
2,

1

dωe − ω

}
. (101)

Before we proceed with the proof we make a remark which justifies the title of this subsection - The set
ID ∪ TD ∪ SD ∪ CSD is indeed small - the slowest growth rate of the sequence (qn) is given by the Fibonacci
sequence, which is exponential. Using this it’s easy to see that the excluded set has density 0 in the natural numbers.

Proof. If |qω−p| > 1 then the theorem is trivially true (for all q), thus we are left with the p’s for which |qω−p| < 1.
Corollary 3.3 tells us in turn that there are two such p’s, namely p(q) and p(q) + (−1)j(q)−1. We shall therefore
divide the proof into two cases - one dealing with |qω − p(q)| and the other with |qω −

(
p(q) + (−1)j(q)−1

)
| (both

of which will be further divided into subcases). Again, in order to simplify the notations, we replace p(q) and j(q)
by p and j for the course of the proof, since this causes no ambiguities.

The main idea now is to show that in both cases we can get a lower bound by ηn−2 multiplied by some constant
(n being the first digit in the address of q, i.e. such that qn−1 < q 6 qn) provided that q does not belong to the
four excluded sets. This is enough, since

ηn−2 = |qn−2ω − pn−2| >
1

qn−1 + qn−2
>

1

2q
. (102)

Observe that in lemma 3.2 we actually showed that

|qω − p| > ηn−1. (103)

It is the transition from ηn−1 to ηn−2 in the above inequality that forces us to reject some numbers q from our
considerations.

In this proof we do not stick to one particular expansion of q, instead we frequently switch between different
expansions. Observe however, that in view of lemma 3.1 this is justified, since - as will turn out in the course of the
proof - all essential quantities appearing along the way depend only on p and (−1)j−1 and are thus do not depend
on the choice of expansion.

Case 1. Estimating |qω − p|.

Case 1.1. The number n− 1− j is even.

|qω − p| = (−1)j−1(qω − p) =

= kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .− kn−2ηn−2 + kn−1ηn−1 + ηn =

= (kj − 1)ηj + ηj − kj+1ηj+1 + (kj+2 − 1)ηj+2 + ηj+2 − kj+3ηj+3+

+ . . .− kn−2ηn−2 + (kn−1 − 1)ηn−1 + ηn−1 + ηn =

= (kj − 1)ηj + (aj+2 − kj+1)ηj+1 + kj+2ηj+2 + (aj+4 − kj+3)ηj+3 + kj+4ηj+4+

+ . . .+ (an−1 − kn−2)ηn−2 + kn−1ηn−1 + ηn−1 + ηn.

(104)

In the above we have used the fact that

ηs − ks+1ηs+1 + (ks+2 − 1)ηs+2 = (as+2 − ks+1)ηs+1 + ks+2ηs+2. (105)

Observe that the last expression in (104) can be not greater than ηn−2 only if kj = 1, kj+1 = aj+2, kj+2 = 0,
kj+3 = aj+4, . . . , kn−2 = an−1 and kn−1 is arbitrary. Otherwise, there will always emerge an ηs with s 6 n− 2
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in this sum. Numbers q with this type of address are equal to

q = qn − kn−1qn−1 − an−1qn−2 − an−3qn−4 − . . .− aj+2qj+1 − qj =

= qn − kn−1qn−1 − (qn−1 − qn−3 + qn−3 − qn−5 + . . .+ qj+2 − qj + qj) =

= qn − (kn−1 + 1)qn−1 = qn−2 + (an − kn−1 − 1)qn−1,

(106)

that is are of the form qn−2 + aqn−1 for some a = 0, . . . , an − 1, thus they are among the excluded q’s - either
initial denominators, true denominators or semidenominators.

Case 1.2. The number n− 1− j is odd.
Just like in case 1.1 we obtain that if we want to have |qω − p| > ηn−2 we need to exclude addresses of the

form
(n; kn−1, 0, an−2, 0, an−4, 0, . . . , 0, aj+4, 0, aj+2, 1, 0, 0, 0, . . . , 0, 0) (107)

with arbitrary kn−1.

|qω − p| = (−1)j−1(qω − p) =

= kjηj − kj+1ηj+1 + kj+2ηj+2 − . . .+ kn−2ηn−2 − kn−1ηn−1 − ηn =

= (kj − 1)ηj + ηj − kj+1ηj+1 + (kj+2 − 1)ηj+2 + ηj+2 − kj+3ηj+3+

+ . . .+ kn−2ηn−2 − kn−1ηn−1 + ηn =

= (kj − 1)ηj + (aj+2 − kj+1)ηj+1 + kj+2ηj+2 + (aj+4 − kj+3)ηj+3 + kj+4ηj+4+

+ . . .+ kn−2ηn−2 + (an − kn−1)ηn−1.

(108)

Numbers q with this type of address are equal to

q = qn − kn−1qn−1 − an−2qn−3 − an−4qn−5 − . . .− aj+2qj+1 − qj =

= qn − kn−1qn−1 − (qn−2 − qn−4 + qn−4 − qn−6 + . . .+ qj+2 − qj + qj) =

= qn − kn−1qn−1 − qn−2 = (an − kn−1)qn−1,

(109)

that is of the form aqn−1 for some a = 1, . . . , an, thus they are among the excluded q’s - either initial denomi-
nators, true denominators or cosemidenominators.

Case 2. Estimating
∣∣qω − (p+ (−1)j−1

)∣∣.
First note that since |qω − p| < 1 we have

|qω − (p+ (−1)j−1)| = |qω − p+ (−1)j | = |(−1)j−1|qω − p|+ (−1)j | =
= ||qω − p| − 1| = 1− |qω − p| = 1− (−1)j−1(qω − p).

(110)

Case 2.1. The number n− 1− j is even.
We will use the following representation of 1 as a sum (its proof follows from identity (15)):

1 = 1− ηj−1 + aj+1ηj + aj+3ηj+2 + . . .+ an−2ηn−3 + anηn−1 + ηn. (111)

Now, using the above, we obtain

1− (−1)j−1(qω − p) = 1− kjηj + kj+1ηj+1 − kj+2ηj+2 + . . .+ kn−2ηn−2 − kn−1ηn−1 − ηn =

= 1− ηj−1 + (aj+1 − kj)ηj + kj+1ηj+1 + (aj+3 − kj+2)ηj+2 + . . .+

+ kn−2ηn−2 + (an − (kn−1 + 1))ηn−1 + ηn−1.

(112)

Note that because of the above the minimal value of 1 − (−1)j−1(qω − p) is equal to 1 − ηj−1 + ηn−1 and is
attained only if kn−1 = an − 1, kn−2 = 0, kn−3 = an−2, kn−4 = 0, . . . , kj+2 = aj+3, kj+1 = 0 and kj = aj+1.
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Case 2.1.1. The number kn−1 is arbitrary, while kn−2 = 0, kn−3 = an−2, kn−4 = 0, . . . , kj+2 = aj+3,
kj+1 = 0 and kj = aj+1.

We will try to estimate 1− ηj−1 + (an − (kn−1 + 1))ηn−1, or actually even 1− ηj−1 from below by ηn−2.

Case 2.1.1.1. j > 2.
Observe that this implies n > 2.

Case 2.1.1.1.1. j − 1 is odd.

1− ηj−1 = η−1 − η1 + η1 − η3 + . . .+ ηj−3 − ηj−1 =

= a1η0 + a3η2 + . . .+ aj−1ηj−2 > a1η0 > η0 > ηn−2.
(113)

Case 2.1.1.1.2. j − 1 is even.

1− ηj−1 = 1− η0 + η0 − η2 + η2 − η4 + . . .+ ηj−3 − ηj−1 =

= 1− η0 + a2η1 + a4η3 + . . .+ aj−1ηj−2 >

> 1− η0 + a2η1 = 1− η2 > 1− 1

q3
>

2

3
>

1

2q
.

(114)

Case 2.1.1.2. j = 1.

1− η0 = dωe − ω >
1

C2112q
, (115)

where C2112 = 1
dωe−ω .

Case 2.1.1.3. j = 0.
All the numbers q of this case have address of the form

(n; kn−1, 0, an−2, 0, an−4, 0, . . . , a5, 0, a3, 0, a1) (116)

with n odd and kn−1 arbitrary (0 6 kn−1 6 an − 1 as always). These numbers are equal to

q = qn − (kn−1qn−1 + an−2qn−3 + an−4qn−5 + . . .+ a5q4 + a3q2 + a1q0) =

= qn − (kn−1qn−1 + qn−2 − qn−4 + qn−4 − qn−6 + . . .+ q5 − q3 + q3 − q1 + q1 − q−1) =

= qn − qn−2 − kn−1qn−1 = (an − kn−1)qn−1.

(117)

We see that, as in case 1.2, they are among the numbers, which have been excluded in the assumptions
(among initial denominators, true denominators or cosemidenominators).

Case 2.1.2. One of the equalities of case 2.1.1 does not hold.
In this case in expression (112) there will always emerge an ηs with s 6 n− 2. Since 1− ηj−1 > 0 we can

bound everything from below by ηn−2, which is what we want in view of inequality (102).
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Case 2.2. The number n− 1− j is odd.
Our reasoning will be very similar to the one in case 2.1. We first use an analogue of (111):

1 = 1− ηj−1 + aj+1ηj + aj+3ηj+2 + . . .+ an−3ηn−4 + an−1ηn−2 + ηn−1. (118)

Now, as before, we obtain

1− (−1)j−1(qω − p) = 1− kjηj + kj+1ηj+1 − kj+2ηj+2 + . . .+ kn−3ηn−3 − kn−2ηn−2 + kn−1ηn−1 + ηn =

= 1− ηj−1 + (aj+1 − kj)ηj + kj+1ηj+1 + (aj+3 − kj+2)ηj+2 + . . .+

+ kn−3ηn−3 + (an−1 − kn−2)ηn−2 + kn−1ηn−1 + ηn.

(119)

The minimal value of expression (119) is equal to 1− ηj−1 + ηn and is attained when the address of q is equal to

(n; 0, an−1, 0, an−3, 0, . . . , 0, aj+3, 0, aj+1, 0, 0, . . . , 0, 0), (120)

where aj+1 stands in the j-th place from the right (as usual the last position in the sequence is the zeroth place
from the right).

Case 2.2.1. The number kn−1 is arbitrary, while kn−2 = an−1, kn−3 = 0, kn−4 = an−3, kn−5 = 0, . . . ,
kj+2 = aj+3, kj+1 = 0, kj = aj+1.

We will try to estimate 1− ηj−1 + ηn from below by ηn−2.

Case 2.2.1.1. j > 2.
Reasoning in this case is identical to the one in case 2.1.1.1.

Case 2.2.1.2. j = 1.
Reasoning in this case is identical to the one in case 2.1.1.2.

Case 2.2.1.3. j = 0.
We will once more determine all numbers q which satisfy the conditions of this case. These numbers

have addresses of the form

(n; kn−1, an−1, 0, an−3, 0, an−5, . . . , a5, 0, a3, 0, a1) (121)

with n even and kn−1 arbitrary. These numbers are equal to

q = qn − (kn−1qn−1 + an−1qn−2 + an−3qn−4 + . . .+ a5q4 + a3q2 + a1q0) =

= qn − (kn−1qn−1 + qn−1 − qn−3 + qn−3 − qn−5 + . . .+ q5 − q3 + q3 − q1 + q1 − q−1) =

= qn − qn−1 − kn−1qn−1 = qn−2 + (an − (kn−1 + 1))qn−1.

(122)

We see that all such q’s are among the excluded ones (among initial denominators, true denominators or
semidenominators).

Case 2.2.2. One of the equalities of case 2.2.1 does not hold.
As in case 2.1.2 in expression (119) there will emerge an ηs with s 6 n − 2 and this fact combined with

inequality 1− ηj−1 > 0 will result in a lower bound by ηn−2.
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We remark that apart from the result in the statement of theorem 3.2 the methodology used in the proof can
give a detailed insight into the dependence of actual size of |qω−p| on q. There is room for improvement, one could
refine the result (which would mean an even more nested structure of cases in the proof) to obtain far more precise
estimates. This could be done, for instance, by not focusing on bounding everything in the proof from below by
ηn−2 but by ηn−3. However we do not pursue this here, as theorem 3.2 will be sufficiently good for our applications.

It turns out that some simple calculations can provide us with a slight generalization of theorem 3.2. To
formulate it we first introduce some notations:

TP = {(q, p) ∈ Z2
∗ : q = qn and p = pn for some n > 2}, (123)

SP = {(q, p) ∈ Z2
∗ : q = aqn−1 + qn−2 and p = apn−1 + pn−2 for some n > 2 and a ∈ {1, . . . , an − 1}}, (124)

CSP = {(q, p) ∈ Z2
∗ : q = aqn−1 and p = apn−1 for some n > 2 and a ∈ {2, . . . , an}}, (125)

IP = {(q, p) ∈ Z2
∗ : 1 6 q 6 a1 and p = 1 + qa0}, (126)

IP ′ = {(q, p) ∈ Z2
∗ : 1 6 q 6 a1 and p = qa0}, (127)

Bad = TP ∪ −TP ∪ SP ∪ −SP ∪ CSP ∪ −CSP ∪ IP ∪ −IP ∪ IP ′ ∪ −IP ′, (128)

Good = Z2
∗ \ Bad. (129)

Theorem 3.2. Suppose ω is irrational and (q, p) ∈ Good. Then

|qω − p| > 1

Cq
, (130)

where C is the constant from theorem 3.1.

4 Bounds in the homological equation

4.1 Preparatory estimations

In this section we consider the homological equation suitable for the problem of rectification of a perturbation of a
constant torus flow and we give bounds on its solution in terms of the initial data. More specifically let δ > 0 be a
number smaller than ρ. The goal of this section is to find estimates on ||h||ρ−δ in terms of δ and ||a||ρ. In order to
do this we first need a lemma about the decay rate of Fourier coefficients of the function a:

Lemma 4.1. Let f ∈ Pρ and let fl denote its Fourier expansion terms. Then

|fl| 6 ||f ||ρ · e−|l|ρ.

Proof. We shall follow the exposition given in [3]. The Fourier series terms are given by the equality

fl1,l2 =
1

(2π)2

∫ 2π

0

∫ 2π

0

f(x, y)e−i(l1x+l2y)dx dy,

so we need to estimate the absolute value of this integral. To do this we shall use the fact that in the case of analytic
functions we have the freedom to change the path of integration. Instead of integrating over the segment between 0
and 2π we shall integrate over the sum of three segments: [0,±iρ], [±iρ, 2π ± iρ] and [2π ± iρ, 2π], where the signs
will be chosen in accordance with the signs of l1 and l2. The integrals over the first and third interval will cancel
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out because of the periodicity of the integrand in real directions.

|fl1,l2 | =
1

(2π)2

∣∣∣∣∫ y=2π

y=0

∫ x=2π

x=0

f(x, y)e−i(l1x+l2y)dx dy

∣∣∣∣ =

=
1

(2π)2

∣∣∣∣∣
∫ y=2π

y=0

e−il2y ·

[(∫ x=−iρ·sgn l1

x=0

+

∫ x=2π−iρ·sgn l1

x=−iρ·sgn l1

+

∫ x=2π

x=2π−iρ·sgn l1

)
f(x, y)e−l1xdx

]
dy

∣∣∣∣∣ =

=
1

(2π)2

∣∣∣∣∣
∫ y=2π

y=0

e−il2y ·

[(∫ x=−iρ·sgn l1

x=0

+

∫ x=2π−iρ·sgn l1

x=−iρ·sgn l1

−
∫ x=2π−iρ·sgn l1

x=2π

)
f(x, y)e−l1xdx

]
dy

∣∣∣∣∣ =

=
1

(2π)2

∣∣∣∣∣
∫ y=2π

y=0

e−il2y ·

[∫ x=2π−iρ·sgn l1

x=−iρ·sgn l1

f(x, y)e−l1xdx

]
dy

∣∣∣∣∣ =

=
1

(2π)2

∣∣∣∣∣
∫ y=2π−iρ·sgn l2

y=−iρ·sgn l2

e−il2y ·

[∫ x=2π−iρ·sgn l1

x=−iρ·sgn l1

f(x, y)e−l1xdx

]
dy

∣∣∣∣∣ 6
6

1

(2π)2
· 2π · sup

y∈[−iρ·sgn l2,2π−iρ·sgn l2]

∣∣∣∣∣e−il2y
[∫ 2π−iρ·sgn l1

−iρ·sgn l1

f(x, y)e−il1xdx

]∣∣∣∣∣ 6
6

1

2π
e−|l2|ρ · sup

y∈Π(ρ)

∣∣∣∣∣
∫ 2π−iρ·sgn l1

−iρ·sgn l1

f(x, y)e−il1xdx

∣∣∣∣∣ 6
6

1

2π
e−|l2|ρ · sup

y∈Π(ρ)

[
2π · sup

x∈[−iρ·sgn l1,2π−iρ·sgn l1]

∣∣f(x, y)e−il1x
∣∣] 6

6 e−|l2|ρ · e−|l1|ρ sup
y∈Π(ρ)

sup
x∈Π(ρ)

|f(x, y)| = ||f ||ρ · e−|l|ρ.

(131)

We will now make an attempt to estimate ||h||ρ−δ:

||h||ρ−δ = sup
x,y∈Π(ρ)

|h(x, y)| = sup
x,y∈Π(ρ−δ)

∣∣∣∣∣∣
∑
l∈Z2
∗

al
i(l1 + l2ω)

ei(l1x+l2y)

∣∣∣∣∣∣ 6
6 sup
x,y∈Π(ρ−δ)

∣∣∣∣∣∣
∑

l:(l2,−l1)∈Good

al
i(l1 + l2ω)

ei(l1x+l2y)

∣∣∣∣∣∣+
∑

l:(l2,−l1)∈Bad

(
|al|

|l1 + l2ω|
· sup
x,y∈Π(ρ−δ)

∣∣∣ei(l1x+l2y)
∣∣∣) =

= sup
x,y∈Π(ρ−δ)

∣∣∣∣∣∣
∑

l:(l2,−l1)∈Good

al
i(l1 + l2ω)

ei(l1x+l2y)

∣∣∣∣∣∣+
∑

l:(l2,−l1)∈Bad

|al|
|l1 + l2ω|

e|l|(ρ−δ)
(?)

6

6 sup
x,y∈Π(ρ−δ)

∣∣∣∣∣∣
∑

l:(l2,−l1)∈Good

al
i(l1 + l2ω)

ei(l1x+l2y)

∣∣∣∣∣∣+ ||a||ρ
∑

l:(l2,−l1)∈Bad

e−|l|δ

|l1 + l2ω|
.

(132)

In inequality (?) we used lemma 4.1. We performed the splitting above for a reason - the first summand in the
above sum can be now bounded from above using the following theorem of Rüssmann, which we state in a form
which suits best our needs:
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Theorem 4.1 (Rüssmann, [25]). Suppose a ∈ Pρ for some ρ > 0 and that the average of a is zero. Assume also
that ω is such that the inequalities

|qω − p| > 1

Cq
(133)

hold for all (q, p) ∈ Z2
∗. Then the differential equation (HOM) has a unique zero-mean solution h which belongs to

Pρ−δ for any 0 < δ < ρ. Moreover, we have

||h||ρ−δ 6
9π

2
Cδ−1||a||ρ. (134)

The method of proof of theorem 4.1 allows us, however, to draw a conclusion useful for us. Namely if we
assume that the diophantine condition is satisfied only for (q, p) ∈ Good and consider the projection of h onto the
subspace spanned by the Good elements of the Fourier basis, then the theorem still holds. This way we are left
with estimating ∑

(q,p)∈Bad

e−(|q|+|p|)δ

|qω − p|
. (135)

4.2 Estimates with a Brjuno-like function

We will now provide bounds for the sum over Bad and for this we introduce Brjuno-like functions. We will introduce
them after performing some motivating computations. To give bounds on the sum over Bad we first observe that
for J ⊂ Z2

∗ the sums over J and −J are equal, since the summands are symmetric. This way

∑
Bad

= 2 ·

(∑
IP

+
∑
IP ′

+
∑
TP

+
∑
SP

+
∑
CSP

)
(136)

We will give bounds on each of the above sums.
1. Sum over TP .

∑
(q,p)∈TP

e−(|q|+|p|)δ

|qω − p|
=
∑
n>2

e−(qn+pn)δ

ηn
(137)

From lemma 3.2 we know that pn is either equal to bqnωc or dqωe, therefore it is certainly bounded from below by
qnω − 1. Thus ∑

n>2

e−(qn+pn)δ

ηn
6
∑
n>2

e−(qn+qnω−1)δ

ηn
= eδ

∑
n>2

e−qn(1+ω)δ

ηn
. (138)

We define brj1ω(δ) to be the last sum:

brj1ω(δ) = eδ
∑
n>2

e−qn(1+ω)δ

ηn
. (139)

2. Sum over SP .

∑
(q,p)∈SP

e−(|q|+|p|)δ

|qω − p|
=
∑
n>2

an−1∑
a=1

e−(aqn−1+qn−2+apn−1+pn−2)δ

|a(qn−1ω − pn−1) + (qn−2ω − pn−2)|
(140)
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Again, apn−1 + pn−2 is either equal to the floor or ceiling of (aqn−1 + qn−2)ω, thus it is bounded from below by
(aqn−1 + qn−2)ω − 1. Thus

∑
n>2

an−1∑
a=1

e−(aqn−1+qn−2+apn−1+pn−2)δ

|a(qn−1ω − pn−1) + (qn−2ω − pn−2)|
6 eδ

∑
n>2

an−1∑
a=1

e−(aqn−1+qn−2)(1+ω)δ

ηn−2 − aηn−1
= (141)

= eδ
∑
n>2

an−1∑
a=1

e−(aqn−1+qn−2)(1+ω)δ

ηn + anηn−1 − aηn−1

a7→an−a= (142)

= eδ
∑
n>2

an−1∑
a=1

e−(anqn−1−aqn−1+qn−2)(1+ω)δ

ηn + aηn−1
6 (143)

6 eδ
∑
n>2

e−(anqn−1+qn−2)(1+ω)δ

ηn−1
·
an−1∑
a=1

1

a
eaqn−1(1+ω)δ 6 (144)

6 eδ
∑
n>2

e−(qn−(an−1)qn−1)(1+ω)δ

ηn−1
·Han−1 = (145)

= eδ
∑
n>1

e−(qn−1+qn)(1+ω)δ

ηn
Han+1−1, (146)

where Hm denotes the m-th harmonic number:

Hm =

{
0 if m = 0∑m
j=1 j

−1 if m > 0
. (147)

We define brj2ω(δ) to be the last sum:

brj2ω(δ) = eδ
∑
n>1

e−(qn−1+qn)(1+ω)δ

ηn
Han+1−1. (148)

3. Sum over CSP . Analogously to the case of TP and SP we obtain

∑
(q,p)∈CSP

e−(|q|+|p|)δ

|qω − p|
=
∑
n>2

an∑
a=2

e−(aqn−1+apn−1)δ

a|qn−1ω − pn−1|
6 eδ

∑
n>2

an∑
a=2

e−aqn−1(1+ω)δ

aηn−1
6 eδ

∑
n>1

e−2qn(1+ω)δ

ηn
(Han − 1). (149)

We define brj3ω(δ) to be the last sum:

brj3ω(δ) = eδ
∑
n>1

e−2qn(1+ω)δ

ηn
(Han+1 − 1). (150)

Definition 4.1. We call a number ω ∈ R \ Q super-Brjuno if for all δ > 0 the series brj1ω(δ), brj2ω(δ) and brj3ω(δ)
are convergent.

Definition 4.2. We define the super-Brjuno function to be

brjω(δ) = brj1ω(δ) + brj2ω(δ) + brj3ω(δ). (151)
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Collectively we have thus proved above the following

Theorem 4.2. Suppose ω is a super-Brjuno number. Then the solution h of the homological equation (HOM)
satisfies

||h||ρ−δ||a||−1
ρ 6

9π

2
Cδ−1 + 2brjω(δ) + 2

a1∑
q=1

e−(q+qa0+1)δ

|qω − qa0 − 1|
+ 2

a1∑
q=1

e−q(1+a0)δ

q|ω − a0|
(152)

4.3 Estimates under the Khintchine - Lévy condition

We now restrict our attention to Khintchine-Lévy numbers - from now until the end of this section we assume that
ω ∈ KL(T−, T+, N) for some T−, T+ > 0 and N ∈ N. Our goal is to estimate brjω(δ) (and thus in view of theorem
4.2 on ||h||ρ−δ). For convenience we first introduce the “finite” and “tail” parts of the super-Brjuno functions and
a technical lemma.

Definition 4.3. We define

brj1(N)
ω (δ) = eδ

N−1∑
n=2

e−qn(1+ω)δ

ηn
, (153)

brj2(N)
ω (δ) = eδ

N−1∑
n=1

e−(qn−1+qn)(1+ω)δ

ηn
Han+1−1, (154)

brj3(N)
ω (δ) = eδ

N−1∑
n=1

e−2qn(1+ω)δ

ηn
(Han+1

− 1) (155)

brj1[N ]
ω (δ) = eδ

∞∑
n=N

e−qn(1+ω)δ

ηn
, (156)

brj2[N ]
ω (δ) = eδ

∞∑
n=N

e−(qn−1+qn)(1+ω)δ

ηn
Han+1−1, (157)

brj3[N ]
ω (δ) = eδ

∞∑
n=N

e−2qn(1+ω)δ

ηn
(Han+1

− 1). (158)

and

brj(N)
ω (δ) = brj1(N)

ω (δ) + brj2(N)
ω (δ) + brj3(N)

ω (δ), (159)

brj[N ]
ω (δ) = brj1[N ]

ω (δ) + brj2[N ]
ω (δ) + brj3[N ]

ω (δ). (160)

Lemma 4.2. Let m be a natural number. The following inequalities hold:

am+1 <
qm+1

qm
, (161)

Hm − 1 6 logm, (162)

Hm−1 6
1

log 2
logm. (163)

Proof. As for the first inequality we have

qm+1 = am+1qm + qm−1 > am+1qm. (164)

22



As for the second one

1

2
+

1

3
+ . . .+

1

m
<

∫ 2

1

dx

x
+

∫ 3

2

dx

x
+ . . .+

∫ m

m−1

dx

x
= logm. (165)

As for the third observe that it equality holds for m = 1, 2 and for m > 3 we have

Hm−1 = 1 +Hm−1 − 1 6 1 + log(m− 1) 6
1

log 2
logm. (166)

Now since the Khintchine-Lévy condition deals with qn for n > N we will give bounds on the “tail” parts of the
super-Brjuno functions. For simplicity denote

∆ = (1 + ω)δ. (167)

In what follows by Γ we will mean the Euler Γ function and by Γ′ its derivative.

1. Bounds on brj1[N ]
ω (δ).

e−δbrj1[N ]
ω (δ) =

∞∑
n=N

e−qn∆

ηn
6
∞∑
n=N

qn+1e
−qn∆ 6

∑
n=N

e(`+T+)(n+1) exp

(
−1

2
e(`−T−)n∆

)
= (168)

= e`+T+

∞∑
n=N

e(`+T+)n exp

(
−1

2
e(`−T−)n∆

)
= (169)

= e`+T+ ·

( ∞∑
n=1

e(`+T+)(n+1) exp

(
−1

2
e(`−T−)n∆

)
−
N−1∑
n=1

e(`+T+)(n+1) exp

(
−1

2
e(`−T−)n∆

))
. (170)

Now a simple computation shows that the function

(0,∞) 3 x 7→ e(`+T+)x exp

(
−1

2
e−(`−T−)x∆

)
∈ R (171)

has a single maximum at

x∗ =
1

`− T−
log

(
2(`+ T+)

∆(`− T−)

)
(172)

and that it increases on (0, x∗) and decreases on (x∗,∞). We can thus estimate the sum from 1 to bx∗c from above
by the integral from 1 to dx∗e and the sum from dx∗e to infinity by the integral from bx∗c to infinity. This combined
with the fact that the integral over (bx∗c, dx∗e) is bounded from above by the value of the function at x∗ gives us,
after calculating the integral from 0 to infitnity, the following inequality:

∞∑
n=1

e(`+T+)(n+1) exp

(
−1

2
e(`−T−)n∆

)
6 ∆−L ·

[
2LΓ(L) + (2L)Le−1/4L

]
, (173)

where by L we denoted

L =
`+ T+

`− T−
. (174)
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Using this we conclude that

brj1[N ]
ω (δ) 6 eδe`+T+

(
∆−L ·

[
2LΓ(L) + (2L)Le−1/4L

]
−
N−1∑
n=1

e(`+T+)(n+1) exp

(
−1

2
e(`−T−)n∆

))
. (175)

2. Bounds on brj2[N ]
ω (δ)

e−δbrj2[N ]
ω (δ) =

∞∑
n=N

e−(qn−1+qn)∆

ηn
Han+1−1 6

1

log 2

∞∑
n=N

qn+1e
−(qn−1+qn)∆ log

qn+1

qn
6 (176)

6
1

log 2

∞∑
n=N

e(`+T+)(n+1) exp

(
−1

2
∆
(

1 + e−(`−T−)
)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n] =

(177)

=
e`+T+

log 2

∞∑
n=1

e(`+T+)n exp

(
−1

2
∆
(

1 + e−(`−T−)
)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n]− (178)

− e`+T+

log 2

N−1∑
n=1

e(`+T+)n exp

(
−1

2
∆
(

1 + e−(`−T−)
)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n] . (179)

We now use an analogous argument to the one in the previous case to arrive at

1

log 2

∞∑
n=1

e(`+T+)n exp

(
−1

2
∆
(

1 + e−(`−T−)
)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n] 6 (180)

6

(
log 2 + `+ T+

log 2

[
Γ(L) · 2L

(
1 + e−(`−T−)

)L
+ (2L)Le−(1+e−(`−T−))/4L

]
+ (181)

+
T+ − T−

log 2

[
2L

(`− T−)2
(
1 + e−(`+T+)

)L (Γ′(L) + Γ(L) log
2

1 + e−(`+T+)
+ Γ(L) log

1

∆

)])
·∆−L (182)

and thus altogether

brj2[N ]
ω (δ) 6 eδe`+T+

(
log 2 + `+ T+

log 2

[
Γ(L) · 2L

(
1 + e−(`−T−)

)L
+ (2L)Le−(1+e−(`−T−))/4L

]
+ (183)

+
T+ − T−

log 2

[
2L

(`− T−)2
(
1 + e−(`+T+)

)L (Γ′(L) + Γ(L) log
2

1 + e−(`+T+)
+ Γ(L) log

1

∆

)])
·∆−L−

(184)

− eδe`+T+

log 2

N−1∑
n=1

e(`+T+)n exp

(
−1

2
∆
(

1 + e−(`−T−)
)
e(`−T−)n

)
· [log 2 + `+ T+ + (T+ − T−)n] . (185)

3. Bounds on brj3[N ]
ω (δ).

e−δbrj3[N ]
ω (δ) =

∞∑
n=N

e−2qn∆

ηn
(Han+1 − 1) 6

∞∑
n=N

qn+1e
−2qn∆ log

qn+1

qn
6 (186)
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6
∞∑
n=N

e(`+T+)(n+1) exp
(
−∆e(`−T−)n

)
[log 2 + (T+ − T−)n] = (187)

= e`+T+

∞∑
n=1

e(`+T+)(n+1) exp
(
−∆e(`−T−)n

)
[log 2 + (T+ − T−)n]− (188)

− e`+T+

N−1∑
n=1

e(`+T+)(n+1) exp
(
−∆e(`−T−)n

)
[log 2 + (T+ − T−)n] (189)

We now estimate the sum from 1 to infinity exactly as above and we finally obtain

brj3[N ]
ω (δ) 6 eδe`+T+

[
Γ(L) log 2 + LLe−1/2L log 2 +

T+ − T−
(`− T−)2

Γ′(L) +
T+ − T−
(`− T−)2

Γ(L) log
1

∆

]
∆−L− (190)

−
N−1∑
n=1

e(`+T+)(n+1) exp
(
−∆e(`−T−)n

)
[log 2 + (T+ − T−)n]. (191)

We remark that all of the above series are of the order O(δ−L log δ−1), which is crucial for the Kolmogorov -
Newton iterative scheme.

5 Metric properties of the Khintchine - Lévy condition

In this section we prove that for certain T and N the measure (both Lebesgue and Gauss) of the set KL◦(T,N) is
positive and we also provide lower bounds for it (◦ ∈ {+,−, } from here on).

Note that obtaining lower bounds on the measure of KL◦(T,N) is the same as obtaining upper bounds on the
measure of KL◦(T,N)c and, according to (27), we have

KL◦(T,N)c =

∞⋃
n=N

KL◦n(T )c, (192)

therefore it is enough to estimate the measure of KL◦n(T )c from above by a quantity which gives a convergent series
with sum less than 1. We will indeed show that this upper bound is exponential in −n. We begin our considerations
with a result related to the Khintchine-Lévy theorem (theorem 2.1).

Lemma 5.1. The following inequalities hold for all n > 1:

− log 2 < Eγ log qn − n` < 0. (193)

Proof. First observe that
1

log 2

∫ 1

0

log x

x+ 1
dx = −`, (194)

thus, using the invariance of γ under G, we can conclude that for n = 1, 2, . . .

Eγ log xn = `. (195)

Using this (and lemma 2.1) we see that

Eγ log(η−1
n−1) = Eγ log(x1 . . . xn) = n`. (196)
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This way for our purposes it is enough to estimate Eγ log(qnηn−1). We know, however, in view of inequalities (102)
that

1

2
< qnηn−1 < 1 (197)

and the result follows.

Denote
Xn = log

qn
qn−1

(198)

and
Sn = X1 + . . .+Xn = log qn (199)

for n = 1, 2, . . .. Observe that

KLn(T )c =

{
ω ∈ X :

log qn
n

> `+ T

}
=

{
ω ∈ X :

(X1 − `) + (X2 − `) + . . .+ (Xn − `)
n

> T

}
= (200)

=

{
ω ∈ X :

Sn
n
− ` > T

}
. (201)

This way we can regard the measure of KLn(T )c as the tail of the probability distribution of the “almost” centering
of random variables Sn/n (the “almost” part is because of lemma 5.1). Now the Khintchine-Lévy theorem (theorem
2.1) tells us that a strong law of large numbers holds for the sequence (Xn). We would now like to obtain a stronger
result - a quantitative central limit theorem. The problem with our setting is that the random variables Xj are
not independent as required in the classical CLT-like results. They are, however, close to being independent - they
satisfy the following condition of ψ-mixing :

Definition 5.1. Let (Yn)∞n=1 be a sequence of random variables on a probability space (Y,Σ, µ). For indices
a 6 b ∈ N∗ ∪ {∞} denote by σba the σ-algebra generated by random variables Yν with a 6 ν 6 b. We say that the
sequence (Yn) is ψ-mixing (w.r.t. µ) if

sup

∣∣∣∣ µ(A ∩B)

µ(A)µ(B)
− 1

∣∣∣∣ n→∞−→ 0, (202)

where the supremum is taken over A ∈ σk1 , B ∈ σ∞k+n and k ∈ N∗.

The ψ-mixing property tells us the following: the more two events A and B are separated in time the more
independent they become.

Lemma 5.2. The sequence (Xn) is ψ-mixing w.r.t. the Gauss measure γ.

Proof. Since ψ-mixing depends only on the σ-algebras generated by the sequence and

qj
qj−1

= [aj , . . . , a1]−1 (203)

the claim follows from [16, Theorem 1.3.14] and [16, Proposition 1.3.13].

We can now apply the results of large deviations theory, which makes it possible to control the tails of probability
distributions (and thus gives the desired quantitative CLT-like result) knowing how the moments of Xn behave.
We give the flavor of our strategy by the following two theorems taken from [28].
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Theorem 5.1 ([28, Theorem 4.21]). Let (Yn)∞n=1 be a sequence of random variables defined on a probability space
(Y,Σ, µ) and denote Wn = Y1 + . . .+ Yn. Assume that Yn = fn(ξn), where fn is a real valued measurable function
and ξn is a Markov chain (w.r.t. µ) and that (Yn) is a ψ-mixing sequence (w.r.t. to µ). Assume also that it satisfies
the following moment estimate:

Eµ|Yn|k 6 (k!)1+γ1Hk
1 (204)

for some constants γ1 > 0 and H1 > 0 and all integers k > 2 and n > 1. Then for each n > 1 the following
inequality holds:

|Γk(Wn)| 6 (k!)1+γ116k−1Hk
1n, (205)

where the cumulants Γk are taken with respect to µ.

Theorem 5.2 ([28, Lemma 2.4], [4]). Let W be a centered random variable defined on a probability space (Y,Σ, µ)
(i.e. EµW = 0). Assume there exist constants γ2 > 0, H > 0 and ∆̄ > 0 such that for all integers k > 2 we have

|Γk(W )| 6
(
k!

2

)1+γ2 H

∆̄k−2
. (206)

Then for all x > 0 the following inequality is valid:

µ(±W > x) 6 exp

(
− x2

2
(
H +

(
x/∆̄1/(1+2γ2)

))(1+2γ2)/(1+γ2)

)
. (207)

Here Γk denotes the cumulant taken w.r.t. µ, while the notation ±W indicates that the inequality holds both for W
and −W .

In order to be able to apply theorems 5.1 and 5.2 we need to verify if the random variables Xj are associated to
a Markov chain.

Lemma 5.3. The sequence (qn−1/qn)∞n=1 is a Q-valued Markov chain w.r.t. γ.

Proof. We will show a much stronger claim - that sn = qn−1/qn satisfies the Markov property for any measure, for
which the definition of a Markov chain makes sense. In other words we claim that if our sequence at time n is in a
state s̄n, then we can retrieve all its past states. Since

sn = [an, . . . , a1] (208)

the state s̄n must necessarily be a rational number, whose continued fraction expansion has length equal to n,
otherwise the set {sn = s̄n} is empty. In this case it is enough to compute the continued fraction expansion of s̄n
(we denote it by [ān, . . . , ā1]) and the past states are uniquely given by

s̄j = [āj , . . . , ā1] (209)

since s̄n has exactly one continued fraction expansion with length equal to n.
In other words the conditional probability of {sn = s̄n} under the assumption that {sn−1 = s̄n−1, . . . , s1 = s̄1}

is either ill-defined or equal to zero (this happens when one of the equalities s̄n−j = Gj(s̄n), j = 0, . . . , n− 1 is not
valid, in particular the second scenario happens when s̄n−j = Gj(s̄) with s̄ 6= s̄n) or it is equal to the probability of
{sn = s̄n} under {sn−1 = G(s̄n), sn−2 = G2(s̄n), . . . , s1 = Gn−1(s̄n)}, in which case it is equal to the probability of
{sn = s̄n} under {sn−1 = G(s̄n)}.

27



It is clear that upon substituting Sn − EγSn for W and nT for x in theorem 5.2 we almost obtain desired
estimates on KL+

n (T )c and we only need to make corrections taking into account lemma 5.1, since Eγ log qn is only
approximately equal to n`. We thus only have to verify the assumptions of theorem 5.1 with Yn = Xn to obtain
estimates on k-th cumulants of Sn with k > 2 (which are also estimates on cumulants of Sn−EγSn, since centering
only affects the first cumulant) to later use them in theorem 5.2.

Theorem 5.3. The Gauss measure of KL(T−, T+, N)c satisfies

γ(KL(T−, T+, N)c) 6 β(T−, N) + β(T+, N), (210)

where

β(T,N) =
exp

(
− T 2

32r̄(2r̄+T )N
)

1− exp
(
− T 2

32r̄(2r̄+T )

) (211)

and
r̄ = sup

k>2
ζ(k + 1)1/k =

√
ζ(3) < 1.097. (212)

Proof. We first give an upper bound of the measure of KL+(T,N)c. We begin with estimating the k-th moment
of Xn for k > 2. We have

Eγ |Xn|k = Eγ
∣∣∣∣log

qn
qn−1

∣∣∣∣k 6 Eγ | log(1 + an)|k (?)
= Eγ | log(1 + a1)|k =

∫ 1

0

| log(1 + bx−1c)|k

1 + x
dx 6 (213)

6
∫ 1

0

| log(1 + x−1)|k

1 + x
dx =

∫ ∞
1

log(1 + y)k

y2 + y
dy =

∫ ∞
log 2

zke−z

1− e−z
dz = (214)

=

∞∑
j=1

∫ ∞
log 2

zke−jzdz =

∞∑
j=1

1

jk+1

∫ ∞
log 2/j

uke−udu 6 ζ(k + 1) · k! 6 r̄k · k!. (215)

Equality (?) is a consequence of G-invariance of γ, while in the following equalities we simply substituted x for 1/y,
1+y for ez and jz for u, respectively. The exponential estimate of the Riemann zeta function is much of an overkill
of course, however we introduced it so that the inequality fits the framework of theorem 5.1. Together with the
bounds derived above lemmas 5.3 and 5.2 tell us, that the assumptions of theorem 5.1 are indeed satisfied, thus we
have

|Γk(Sn)| 6 k! · (16r̄)k−2 · 16r̄2n (216)

for k > 2. However, since shifting a random variable by a constant affects only its first cumulant we also have

|Γk(Sn − EγSn)| 6 k! · (16r̄)k−2 · 16r̄2n. (217)

This allows us to apply theorem 5.2 with γ2 = 0, ∆̄ = (16r̄)−1 and H = 32r̄2n, which gives

γ (Sn − EγSn > x) 6 exp

(
− x2

2(32r̄2n+ 16r̄x)

)
. (218)

Observe now that
{ω : Sn − n` > x} ⊂ {ω : Sn − EγSn > x} (219)

thanks to lemma 5.1, which after setting x = nT+ implies

γ(Sn − n` > nT+) 6 exp

(
−

T 2
+

32r̄(2r̄ + T+)
n

)
(220)
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which is equivalent to

γ(KL+
n (T+)c) 6 exp

(
−

T 2
+

32r̄(2r̄ + T+)
n

)
. (221)

For a given natural number N we then have

γ(KL+(T+, N)c) 6
∞∑
n=N

exp

(
−

T 2
+

32r̄(2r̄ + T+)
n

)
=

exp
(
− T 2

+

32r̄(2r̄+T+)N
)

1− exp
(
− T 2

+

32r̄(2r̄+T+)

) = β(T+, N). (222)

The reasoning in the case of KL−(T−, N)c is completely analogous. We first use theorem 5.2 (the −W version) to
arrive at

γ (Sn − EγSn 6 −x) 6 exp

(
− x2

2(32r̄2n+ 16r̄x)

)
. (223)

Thanks to lemma 5.1 we conclude that

{ω : Sn − n`+ log 2 6 −x} ⊂ {ω : Sn − EγSn 6 −x}, (224)

which after setting x = nT− brings us to

γ(Sn − n`+ log 2 6 −nT−) 6 exp

(
−

T 2
−

32r̄(2r̄ + T−)
n

)
, (225)

which is equivalent to

γ(KL−n (T−)c) 6 exp

(
−

T 2
−

32r̄(2r̄ + T−)
n

)
(226)

(notice how log 2 generates the 1/2 factor present in the definition of KL−). Taking the sum over n > N allows us
to conclude that

γ(KL−(T−, N)c) 6 β(T−, N) (227)

and thus
γ(KL(T−, T+, N)c) 6 γ(KL−(T−, N)c) + γ(KL+(T+, N)c) 6 β(T−, N) + β(T+, N). (228)

Corollary 5.4. Results of theorem 5.3 hold mutatis mutandis for the Lebesgue measure as it is equivalent to the
Gauss measure with estimates

1

2 log 2
λ(B) 6 γ(B) 6

1

log 2
λ(B) (229)

valid for any Lebesgue measurable set B.

Corollary 5.5. For D > 1 the inequality

γ(KL(T,N)) > 1− 1

D
(230)

holds whenever

N >
32r̄(T + 2r̄)

T 2

(
log

32r̄(T + 2r̄)

T 2
+ log 2D

)
, (231)

and

γ(KL+(T,N)) > 1− 1

D
(232)
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holds whenever

N >
32r̄(T + 2r̄)

T 2

(
log

32r̄(T + 2r̄)

T 2
+ logD

)
. (233)

In particular we have e.g.

γ(KL(0.3, 9607)) > 0.9, γ(KL(0.3, 11847)) > 0.99, γ(KL(0.3, 14087)) > 0.999 (234)

and
γ(KL+(2, 218)) > 0.9, γ(KL+(2, 303)) > 0.99, γ(KL+(2, 387)) > 0.999. (235)
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