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Abstract

We consider proper holomorphic maps π : D → G where D and G are domains in Cn. Let
α ∈ C(G,R>0). We show that every π induces some subspace H of A2

α◦π(D) such that A2
α(G) is

isometrically isomorphic with H via some unitary operator Γ. Using this isomorphism we construct
the orthogonal projection onto H and we derive Bell’s transformation formula for the weighted
Bergman kernel function under proper holomorphic mappings. As a consequence of the formula we
get that the tetrablock is not a Lu Qi-Keng domain.

1 Introduction
Misra, Roy, and Zhang [12] recently studied the pullback of the Bergman space under a proper holomor-
phic mapping in the context of the symmetrized polydisc. Here we generalize the construction to arbitrary
domains. In particular, we obtain a new proof of Bell’s transformation formula for the Bergman kernel
function under proper holomorphic mappings. As an application, we demonstrate that the Bergman
kernel function of the tetrablock has zeros.

2 Construction of the operator Γ

Let D and G be domains in Cn. Let π : D → G be a proper holomorphic map with multiplicity m,
and fix any α ∈ C(G,R>0). By A2

α(G) we understand the space of all square integrable holomorphic
functions on G with respect to the weight function α, that is

A2
α(G) = {f ∈ O(G) :

∫
G

|f |2αdV <∞}.

The space A2
α(G) with the scalar product

〈f, g〉A2
α(G) =

∫
G

f(z)g(z)α(z) dV (z), f, g ∈ A2
α(G),

is a complex Hilbert space, the Hilbert space of all square integrable holomorphic functions on G with
respect to the weight function α. Let Jπ denote the complex Jacobian of π. We show that there is some
closed subspace H of A2

α◦π(D) (closely related with π) which is unitary isomorphic to A2
α(G). We also

derive an explictit formula for the orthogonal projection onto H.
We proceed to formulate the most important component of this paper.
Let

Γ : A2
α(G)→ A2

α◦π(D),
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be defined as follows
Γf =

1√
m

(f ◦ π)Jπ, f ∈ A2
α(G).

Γ’s adjoint operator is of great importance to us, so we explain how it works. In fact, Γ∗ equals its
inverse Γ−1 (if Γ is understood as an operator from A2

α(G) onto ΓA2
α(G)). To describe Γ∗ take any

g ∈ ΓA2
α(G). Then g

Jπ is a well-defined function on a dense, open subset of D (the set of regular points
of π). Moreover, notice that g

Jπ is invariant under π, that is g
Jπ (z) = g

Jπ (w) for any z, w ∈ D such
that π(z) = π(w), Jπ(w), Jπ(z) 6= 0. Therefore, equality (̃ g

Jπ )(π(z)) = g
Jπ (z) defines well a holomorphic

function on G except for the (analytic) set of critical values of π. However, the Riemann removable
singularity Theorem for square integrable holomorphic functions (see e.g. [8], Theorem 4.2.9) ensures
that (̃ g

Jπ ) has a holomorphic extension on D (denoted by the same symbol). After this consideration the
adjoint operator to Γ might be described by equality

Γ∗g =
√
m(̃

g

Jπ
), g ∈ ΓA2

α(G).

The preceding assumptions remain in force below, unless otherwise stated.

3 Main results
Theorem 1. The set ΓA2

α(G) is a closed subspace of A2
α◦π(D), that is isometrically isomorphic with

A2
α(G) via Γ. The orthogonal projection P onto ΓA2

α(G) is given by a formula

Pg =
1

m

m∑
k=1

(g ◦ πk ◦ π)J(πk ◦ π), g ∈ A2
α◦π(D),

where {πj}mj=1 are the local inverses to π.

Note that it will follow from the proof that the formula on the right side actually defines a function
from ΓA2

α(G) ⊂ A2
α◦φ(D).

Remark 1. In [8] the Riemann removable singularity theorem is proved for the case α ≡ 1, but this
proof might be repeated without any trouble in case α ∈ C(G,R>0). In fact, local boundedness of α is
sufficient.

Motivated by [11], in this paper we investigate the relations between weighted Bergman Spaces:
A2
α(G) and A2

α◦π(D). Recall that the Bergman kernel function with weight α of a domain G (denoted
Kα) is the reproducing kernel of the space A2

α(G). Using the Cauchy integral formula it follows that
for every z ∈ G the evaluation functional evz : A2

α(G) 3 f → f(z) ∈ C is continuous. Thus from the
Riesz representation Theorem there is the unique function Kα

G, z ∈ A2
α(G) (called the kernel function)

such that evz(f) = 〈f,Kα
G, z〉A2

α(G). Then the Bergman kernel function with weight α might be written
as follows

Kα
G(z, w) = 〈Kα

G,w,K
α
G, z〉A2

α(G), z, w ∈ G.

For α ≡ 1 we simply write Kα
G = KG, and call it the Bergman kernel function. The definition and basic

properties of the Bergman kernel function might be found in [7].
As a corollary of Theorem 1 we get Bell’s Theorem. Originally Bell formulated transformation rule

for the Bergman kernel function with weight α ≡ 1. Here we shall prove that the same formula holds in
more general setting, which seems not to have been noticed in the literature.

Corollary 1 (see [2]). Let D and G be domains in Cn and let π : D → G be a proper holomorphic map
with multiplicity m. Denote by π1, . . . , πm the local inverses of π. Then

Jπ(w)Kα
G(π(z), π(w)) =

m∑
k=1

Kα◦π
D (πk ◦ π(z), w)Jπk(π(z)), for any z /∈ π−1(π(N(Jπ))),

where N(Jπ) = {Jπ = 0}.
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Remark 2. Let α ≡ 1. The proof of Theorem 1 shows that Γ is the restriction of an operator Γe from
L2(G) to L2(D), given by the same formula, and all statements contained in Theorem 1 hold for Γe.
Moreover, this together with the transformation formula for the Bergman projection operator, given in
[2], allow us to write PDΓe = ΓePG, where PG and PD denote the Bergman projections of the domains
D and G.

Proof of Theorem 1. The idea of the formula of Γ was inspired by the rule

m

∫
G

fα dV =

∫
D

(f ◦ π)|Jπ|2(α ◦ π) dV for any f ∈ L1
α(G) = {g : G→ C :

∫
G

|f |αdV <∞},

which makes the Γ an isometry. The above rule ensures that the range of Γ is a closed Hilbert subspace
of A2

α◦π(D). Therefore, Γ is a unitary operator from A2
α(G) onto ΓA2

α(G).
Thus, there is the orthogonal projection P from A2

α◦π(D) onto ΓA2
α(G). We prove that P is given by

the formula

Pg =
1

m

m∑
k=1

(g ◦ πk ◦ π)J(πk ◦ π), g ∈ A2
α◦π(D).

Let us denote the right side by Qg. First of all, we need to show that Q is well defined. Using the
properness of π one can easily compute

‖Qg‖2A2
α◦π(D) =

1

m2

∫
D

∣∣∣ m∑
k=1

(g ◦ πk ◦ π)J(πk ◦ π)
∣∣∣2(α ◦ π)dV ≤

1

m

∫
D

m∑
k=1

|(g ◦ πk ◦ π)J(πk ◦ π)|2(α ◦ π)dV = ‖g‖2A2
α◦π(D),

for g ∈ A2
α◦π(D). It remains to verify whether Qg is holomorphic. For that fix some g ∈ A2

α◦π(D).
Notice that the map Qg

Jπ is a well defined holomorphic function on a set D \ π−1(π(N(Jπ))), constant

on the fibres of π. So, it induces some map (̃QgJπ ) which is holomorphic on G \ π(N(Jπ)). The Riemann
removable singularity Theorem (see Remark 1) finishes the correctness of the definition of Q provided

we know that (̃QgJπ ) is square integrable with weight α on G. But for that it is enough to show that
Qg ∈ A2

α◦π(D) what we have just proved. Actually, we have established something more. Namely, that
for any g ∈ A2

α◦π(D) the equation Qg = Γf has solution f in A2
α(G). (The application of the Riemann

removable singularity theorem on the domain D would give us only that Qg ∈ A2
α◦π(D).)

Secondly, notice that Q2 = Q. Indeed,

Q2g =
1

m

m∑
l=1

(Qg ◦ πl ◦ π)J(πl ◦ π) =
1

m2

m∑
l=1

m∑
k=1

(g ◦ πl ◦ π ◦ πk ◦ π)[J(πl ◦ π) ◦ πk ◦ π]J(πk ◦ π)

=
1

m2

m∑
k=1

m∑
l=1

(g ◦ πl ◦ π ◦ πk ◦ π)[J(πl ◦ π) ◦ πk ◦ π]J(πk ◦ π)

=
1

m2

m∑
k=1

m∑
l=1

(g ◦ πl ◦ π)J(πl ◦ π ◦ πk ◦ π) =
1

m2

m∑
k=1

m∑
l=1

(g ◦ πl ◦ π)J(πl ◦ π) = Qg,

for g ∈ A2
α◦π(D).

Up to this point, we only know that Q is the projection. Next, we proceed to show the equality
ranΓ = ranQ. Similarly as above we get Q ◦ Γ = Γ, which gives "⊂". It remains to demonstrate the
opposite inclusion. So, the question is whether Q takes values in ΓA2

α(G). Since Q2 = Q, it is enough to
show that for any g ∈ A2

α◦π(D) the equation Qg = Γf has solution f in A2
α(G), and it holds as we proved

it before. Finally, since Q2 = Q, Q|ranQ = id|ranQ and Q is bounded, Q is the orthogonal projection
onto ΓA2

α◦π(D).

Proof of Corollary 1. We keep the notation from the previous proof. Keeping in mind the discussion from
the second section and the proof of Theorem 1, observe that the reproducing property of the weighted
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Bergman kernel function implies that for any f ∈ A2
α(G) and w ∈ D the following equalities hold

〈Γf, PKα◦π
D (·, w)〉A2

α◦π(D) = 〈Γf,Kα◦π
D (·, w)〉A2

α◦π(D) = Γf(w) =
1√
m
f(π(w))Jπ(w)

= 〈f,Kα
G(·, π(w))〉A2

α(G)
Jπ(w)√

m
= 〈Γf,ΓKα

G(·, π(w))〉A2
α◦π(D)

Jπ(w)√
m

.

Consequently, from the Riesz representation Theorem (uniqueness), applied to the space ΓA2
α(G), and

the unitarity of Γ we get

Jπ(w)Kα
G(π(·), π(w)) =

√
m (Γ∗ ◦ P )Kα◦π

D (·, w)(π(·)).

The last equality holds on D \ π−1(π(N(Jπ))) for arbitrary w ∈ D. But if we take w /∈ π−1(π(N(Jπ))),
then on the same set we have

Kα
G(π(·), π(w)) = (Γ∗ ◦ P )

√
m

Jπ(w)
Kα◦π
D (·, w).

Unwinding the definitions of Γ∗ and P produces the desired statement.

4 The tetrablock is not a Lu Qi-Keng domain
Recall the definition of the object which name appears in the title of this section.

Let
ϕ : RII → C3, ϕ(z11, z22, z) := (z11, z22, z11z22 − z2),

where RII denotes the classical Cartan domain of the second type (in C3), that is

RII = {z̃ ∈M2×2(C) : z̃ = z̃t, ‖z̃‖ < 1},

where ‖·‖ is the operator norm andM2×2(C) denotes the space of 2× 2 complex matrices (we identify a

point (z11, z22, z) ∈ C3 with a 2× 2 symmetric matrix
(
z11 z
z z22

)
). Then ϕ is a proper holomorphic

map and ϕ(RII) = E is a domain (see Remark 4 below), called the tetrablock.
The tetrablock was first studied in [1]. Afterwards it was studied by many authors. In particular,

it was shown that the tetrablock is a C-convex domain (see [15]). The importance of the tetrablock for
the geometric function theory follows from the fact that it is the second example (the first one was was
the symmetrized bidisc) which is hyperconvex and not biholomorphically equivalent to a convex domain
but despite it the Lempert Theorem (see [9] and [10]) holds for it (see [5]). It is also natural to find the
Bergman kernel function for the tetrablock (using the formula for the Bergman kernel function of the
Cartan domain and Bell’s transformation formula). To our surprise it turned out that the tetrablock is
not a Lu Qi Keng domain. Moreover, it vanishes at very simple points. Recall that a domain D is a Lu
Qi-Keng domain if its Bergman kernel function with weight α ≡ 1 does not have zeros and is not a Lu
Qi-Keng domain if it has.

As to the history of the Lu Qi Keng problem we refer the interested Reader to [3]. There are many
results on both : domains being a Lu Qi-Keng and being not a Lu Qi-Keng (see e.g. in [4], [14]) .

Recall that ([6] p. 84)

KRII (t, s) =
1

Vol(RII)

(
det(I − ts)

)−3
, for t, s ∈ RII .

Since every point in RII can be carried by some automorphism of RII into the origin (see [6] p. 84), we
get KRII 6= 0. Thus, RII is a Lu Qi-Keng domain. Therefore, we have a proper holomorphic mapping
ϕ : RII → E of multiplicity 2 such that RII is a Lu Qi-Keng domain whereas E is not a Lu Qi-Keng
domain. Recall that another example of that type is {|z|+ |w| < 1} 3 (z, w)→ (z2, w) ∈ {|z| 12 + |w| < 1}
(see [4]). In our situation there is equality of holomorphically invariant distances in both domains and
both domains are C-convex (see [5], [15]) whereas in the example from [4] it is not the case.

Below we show two results which are consequences of Bell’s transformation formula.
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Corollary 2. For any z̃ = (z11, z22, z), w̃ = (w11, w22, w) ∈ RII

Jϕ(z̃)KE(ϕ(z̃), ϕ(w̃)) Jϕ(w̃) = KRII

(
(z11, z22, z), w̃

)
−KRII

(
(z11, z22,−z), w̃

)
.

A consequence of the last formula is the following:

Corollary 3. E is not a Lu Qi-Keng domain.

We set about achieving above Corollaries.

Proof of Corollary 2. Below we present how operators: Γ and P work in some very special case, that
is when π = ϕ, α = 1, D = RII , G = E. It is not necessary to do that to write down a formula for
KE, but it is so simple in that case, that we think it is worth stating. (We keep the notation from the
second section) The range of the operator Γ is contained in the set of those maps whose coefficients at
zk11z

l
22z

2n in the Taylor expansion at the origin vanish for all k, l, n natural numbers. We showed that
every function in ΓA2(E) is of the form Jπ · h for some function h depending on z11, z22, z

2, but not
necessarily conversly. The projection

P : A2(RII)→ ΓA2(E),

acts as follows

P (f)(z11, z22, z) =
1

2

(
f(z11, z22, z)− f(z11, z22,−z)

)
, f ∈ A2(RII), (z11, z22, z) ∈ RII ,

and the adjoint

Γ∗g =
√

2
(̃ g

Jϕ

)
, g ∈ ΓA2(E).

From the proof of Collorary 1, we might write

KE(ϕ(·), ϕ(w11, w22,w)) = (Γ∗ ◦ P )

√
2

Jϕ(w11, w22, w)
KRII (·, (w11, w22, w)), for (w11, w22, w) /∈ N(Jϕ),

and finally

KE(ϕ(z11, z22, z), ϕ(w11, w22, w)) =

KRII

(
(z11, z22, z), (w11, w22, w)

)
−KRII

(
(z11, z22,−z), (w11, w22, w)

)
Jϕ(z11, z22, z)Jϕ(w11, w22, w)

,

for (z11, z22, z), (w11, w22, w) /∈ N(Jϕ).

Proof of Corollary 3. We examine the formula for the Bergman kernel function for E for pair ϕ(0, 0, 1), ϕ(0, 0, z)
(note that the formula for the Bergman kernel function forRII extends analytically toRII×RII). Calcu-
lation shows that KE(ϕ(0, 0, 1), ϕ(0, 0, z)) = π3

6 (3 + 10z2 + 3z4)(1−z2)−6, z ∈ D, and the last expression
vanishes for z20 = − 1

3 . Now the equality

KE(ϕ(0, 0, 1), ϕ(0, 0, z0)) = KE(ϕ(0, 0, r), ϕ(0, 0,
1

r
z0)),

which holds for 0 < r < 1 such that z0
r ∈ D, finishes the proof.

5 Remark on proper holomorphic mappins
One may show directly the fact that ϕ described in the last section is a proper holomorphic mapping
and E is a domain. However, it seems reasonable to formulate a result which will be the generalization
of that fact and that will help us to avoid the ad hoc proof of properness and openness of a wide class
of mappings. That is the reason why we present below some auxiliary result whose idea of the proof
basically comes from the proof of Proposition 2.1 in [13]. We formulate and show it in a more general
setting so that it could be applied among others to the above mentioned case of the tetrablock and the
symmetrized polydisc.
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Proposition 1. Let D be a domain in Cn. Let π : D → Cn be a holomorphic map. Assume there exists
a finite group of homeomorphic transformations U of D such that π is precisely U-invariant, that is for
z, w ∈ D we have that π(z) = π(w) if and only if Uz = w for some U ∈ U . Then π(D) is a domain and
π : D → π(D) is a proper mapping.

Proof of Proposition 1. Let {Kk}k∈N be an increasing sequence of relatively compact domains of D
exhausting D. Consider a new sequence {Dk :=

⋃
U∈U U(Kk)}k. Since U is finite, the set Dk is a

relatively compact subset of D for every k. Moreover, there is some N such that for k > N the set Dk is
a domain. Certainly, this new sequence {Dk}k is exhausting D. Fix k > N . Then Uk = {U |Dk : U ∈ U}
is a finite group of automorphisms of Dk and π|Dk : Dk → Cn is precisely Uk-invariant. These two facts
together with the properness of U |Dk as a selfmap of Dk for every U ∈ U , imply that the intersection
of the sets π(Dk) and π(∂Dk) is empty. Let Ωk be the component of Cn \ π(∂Dk) that contains π(Dk).
Consequently, we get that π(∂Dk) ⊂ ∂Ωk. This implies that π|Dk : Dk → Ωk is a proper map (here we
used the fact that π is a holomorphic map on Dk which extends continuously to Dk).

Therefore, Ωk = π(Dk). Let Ω = ∪kΩk. Evidently, Ω = π(D) is a domain in Cn. The properness
of π might be checked as follows. If K ⊂ Ω is compact, then K ⊂ Ωk for some k. Hence π−1(K) is a
compact subset of Dk, and thus a compact subset of Ω.

Remark 3. In Proposition 1 we only assumed that every U ∈ U is a homeomorphism but the equality π◦
U = π easily implies that U actually is necessarily contained in the group of holomorphic automorphisms
of D.

Remark 4. Map ϕ (defined above) is UE = {Id, diag(1, 1,−1)}-invariant. What needs be to verified
is only whether UE describes a subgroup of the group of automorphisms of RII . It can be derived by

showing that the norm of matrix
(
z11 z
z z22

)
(vieved as an operator on C2) equals the norm of the

related matrix
(
z11 −z
−z z22

)
. But the norm of the matrix

(
z11 −z
−z z22

)
equals

sup
a,b,c,d∈C,|a|2+|b|2=1|c|2+|d|2=1

(
a b

)( z11 −z
−z z22

)(
c
d

)
,

and clearly (
a b

)( z11 −z
−z z22

)(
c
d

)
=
(
a −b

)( z11 z
z z22

)(
c
−d

)
,

so the claim follows.

Remark 5. Let us consider a map π = (π1, . . . , πn) on Dn where πj is the j-th elementary symmetric
polynomial. In that case the finite group of unitary transformations under which π is precisely invariant is
the group of permutations Sn. Proposition 1 gives the proof of the fact that π|Dn is a proper holomorphic
mapping onto the image i. e. the symmetrized polydisc and the symmetrized polydisc is open.

Remark 6. Fix any k > 2 and consider: a function ϕk : RII → C3, ϕk(z11, z22, z) = (z11, z22, z11z22 −
zk) and a set ϕk(RII). Notice that ϕ is not proper onto its image. If it were, then a map ϕζ : RII →
M2×2(C), (z1, z2, z) → (z1, z2, ζz) should be an isometry (with respect to the operator norm) for every
ζk = 1. However, simple examples show that the last one does not hold. Namely, it is not true that
ϕζ(RII) ⊂ RII for ζ ∈ k

√
1.

We might go further consider the classical Cartan domain of second type RII in C(n2), here RII
is the set of all symmetric matrices of order n with the operator norm smaller than 1 (for defini-
tions and properties see [6]), and investigate holomorphic map ϕ : RII → C(n+1

2 ), ϕ((zjk)1≤j≤k≤n) =
(z1,1, . . . , zn,n, z1,1z2,2−z21,2, z1,1z3,3−z21,3, . . . , z1,1zn,n−z21,n, . . . , zn−1,n−1zn,n−z2n−1,n). Unfortunately,
ϕ fails to be proper onto the image (for the same reason as ϕk are not), either. So, this indicates that
there is no obvious generalization of the tetrablock in higher dimension.

Acknowledgement The autor thanks the referee for many valuable comments which essentially
improved the presentation of the paper.
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