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Abstract. Let X ⊂ Cn be a domain and W ⊂ X be a subdomain, X 6= W . Suppose

that ϕ1 is upper semicontinuous in X \W and ϕ2 is upper semicontinuous in W. We

define ϕ : X −→ R by ϕ = ϕ1 in X \W , ϕ = min{ϕ∗
1, ϕ

∗
2} on X ∩ ∂W and ϕ = ϕ2 in

W . Under suitable conditions on W and X, we will prove that

EH(x) = inf

{
1

2π

∫ 2π

0

ϕ ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
is the largest plurisubharmonic function on X less than ϕ.

In case where ϕ∗
1 = ϕ∗

2 on X∩∂W we get the classical result of Poletsky. In case where

ϕ2 is big enough in W our work looks as a subextention result of Larusson-Poletsky. In

some sense we have a generalization of these results. At the end we will characterize the

thinness of a set at a point with closed analytic discs and give a version of maximum

principle for certain non-thin sets in Cn.

1. Introduction

The main goal of the theory of disc functionals is to provide disc formulas for impor-
tant extremal plurisubharmonic functions in pluripotential theory, that is, to describe
these functions as envelopes of disc functionals. This brings the geometry of analytic
discs into pluripotential theory. Disc formulas have been proved for largest plurisubhar-
monic minorants in ([3], [2], [1]).

Consider a domain X ⊂ Cn and an upper semicontinuous function ϕ : X → R. It is
proven by different methods in [8] and [9] that,

(1) sup{u ∈ PSH(X), u ≤ ϕ} = inf

{
1

2π

∫ 2π

0

ϕ ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.

Formulas of this form are referred to as disc formulas. The elements of O(D, X) are
called analytic disc in X. Functions from O(D, X) to R are called disc functionals. We
call the integral on the right hand side of (1) the Poisson disc functional. The envelope
of a disc functional at a point x is then given by the infimum over all discs sending zero
to x. In this paper we will prove a disc formula for plurisubharmonic functions. Recall
that

• Edigarian in [10] showed that (1) holds if ϕ is plurisuperharmonic;

• Magnusson proved that (1) holds if ϕ = ϕ1 − ϕ2, where ϕ1 is upper semicontin-
uous and ϕ2 is plurisubharmonic.

Key words and phrases. Analytic discs, plurisubharmonic functions, non-thin set, maximum prin-

ciple, envelope of functional.
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In the present paper we will prove in (section 2) that (1) holds for a function ϕ under
the following form

ϕ =


ϕ1 in X \W ;

min{ϕ∗1, ϕ∗2} on ∂W ;
ϕ2 in W.

Where W is a relatively compact subdomain of X and ϕ1, ϕ2 are upper semi continuous
respectively on X \ W and W. The disc formula in (1) has many applications. For
instance one can use it to characterize in terms of analytic discs :

• the pluripolar hull of a pluripolar set see [6];

• a non-pluripolar Borel subset of a Josefson manifold see [7];

• the polynomial hull of a compact subset of Cn see [8].

In fact for K ⊂ Cn compact we define the polynomial hull of K by

K̂ = {z ∈ Cn, |P (z)| ≤ sup
K
|P | for any polynomial P}.

Let X ⊂ Cn be a Runge domain and K ⊂ D be a compact set. In [8] it is proven that

z0 ∈ K̂ if and only if for any ε > 0 any open set V containing K there exists an analytic
disc f : D→ X continuous on D such that f(0) = z0 and

σ({t ∈ T, f(t) ∈ V }) > 1− ε,

where σ is the normalized Lebesgue measure on T.

In section 3 of this paper we give a similar characterization of the thinness of a subset
of Cn at a given point. Our main result Corollary 6 states that :

Y is non-thin at x, if and only if for every ε > 0, every neighborhood V of x and
every open set U containing Y \ {x} there exists f ∈ O(D, V ) such that f(0) = x and

σ(T ∩ f−1(V ∩ U \ {x})) > 1− ε.

Where Y ⊂ Cn and x ∈ Cn. We will refer to (1) as Poletsky’s classical theorem.

Acknowledgement. The author is supported by international PhD programme ”Geometry
and Topology in Physical Models” of the Foundation for Polish Science. He wishes to
thank Professor Armen Edigarian and Mr Dongwei Gu for interesting discussions.

2. Disc formula

Let X be a domain in complex affine space Cn and W ⊂ X a subdomain, X 6= W .
Consider two upper semicontinuous functions ϕ1 : X \W −→ R and ϕ2 : W −→ R. We
define ϕ : X −→ R by ϕ = ϕ1 in X \W , ϕ = min{ϕ∗1, ϕ∗2} on X ∩ ∂W and ϕ = ϕ2 in
W . Notice that ϕ is not necessarily upper semicontinuous on X. We take the constant
function −∞ to be plurisubharmonic. PSH(X) will be the family of plurisubharmonic
functions on X and D denotes the unit disc, T the unit circle and σ the arc length
measure on T. For x ∈ X we consider the function EH : X → R defined by

EH(x) = inf

{
1

2π

∫ 2π

0

ϕ ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.
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In this section we will prove that EH is plurisubharmonic. To do this, we will define on
X an upper semicontinuous function F and prove that

EH(x) = inf

{
1

2π

∫ 2π

0

F ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.

The function F will be defined on using a subset B of O(D, X). Set

B1 = {f ∈ O(D, X), f(T) ⊂ W};

B2 = {f ∈ O(D, X), f(T) ⊂ X \W};
and B = B1 ∪B2. Assume that for all x ∈ X there is f ∈ B such that f(0) = x. We
define by

F (x) = inf

{
1

2π

∫ 2π

0

ϕ ◦ f(eiθ)dθ, f ∈ B, f(0) = x

}
.

Proposition 1. If for all x ∈ X there is f ∈ B so that f(0) = x, then F is upper
semicontinuous on X.

Proof. Let c ∈ R, x ∈ X such that F (x) < c. We will prove that there is a neighborhood
V of x such that F (y) < c for all y ∈ V. By definition of F there is f0 ∈ B with f0(0) = x

such that 1
2π

∫ 2π

0
ϕ ◦ f0(eiθ)dθ < c. Assume that f0 ∈ B1 then f0(T) ⊂ W. As ϕ is upper

semicontinuous on W we can find a decreasing sequence of continuous functions (ψj)j
defined on W that converges to ϕ. There is j0 > 1 such that 1

2π

∫ 2π

0
ψj0 ◦ f0(eiθ)dθ < c.

As W is open and ψj0 is continuous then one can find V ⊂⊂ X a small neighborhood

of x such that {f0(T) + y − x, y ∈ V } ⊂⊂ W , {f0(D) + y − x, y ∈ V } ⊂⊂ X and
1
2π

∫ 2π

0
ψj0(f0(e

iθ) + y − x)dθ < c for all y. Hence F (y) < c for all y ∈ V . That means,
the set {F < c} is open for all c ∈ R, hence F is upper semicontinuous. �

Notice that on X∩∂W we may have ϕ < F since F (x) = limr→0 supB(x,r) F. For example
take ϕ1 = 2 and ϕ2 = −1. If W ⊂⊂ X then we get F = 2 on ∂W while ϕ = −1 there.
Now for x ∈ X we consider the function

PF (x) = inf

{
1

2π

∫ 2π

0

F ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.

Recall that F is upper semicontinuous, then by Poletsky’s classical theorem PF is the
largest plurisubharmonic function on X less than F. Our goal here is to prove that in X

EH = PF ≤ ϕ.

Remark that by definitions EH ≤ F because B ⊂ O(D, X) and EH ≤ ϕ. If we reach to
prove that PF ≤ ϕ then we get PF ≤ EH and other inequality will be given by Lemma
3. The following result due to Bu-Schachermayer is the core of the proof of Lemma 3.
For a detailed proof of Lemma 2 see [9] and [1].

Lemma 2. Let A be a compact subset of T and ψ ∈ C(D). Then there exists a sequence
(pk) of polynomials pk : C→ C satisfying

(i) pk(D) ⊂ D and pk(0) = 0;
(ii) pk → 0 uniformly on every compact subset of D \ A as k →∞;
(iii)

∫
A
ψ ◦ pk(t)dσ(t) −→ σ(A)

∫
T ψ(t)dσ(t) as k →∞.

Lemma 3. If for all x ∈ X there is f ∈ B so that f(0) = x, then EH ≤ PF .
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Proof. Let x ∈ X, h ∈ O(D, X), with h(0) = x, ε > 0 and (ψj)j a sequence of continuous

functions decreasing to F . We will prove that there is Gj ∈ O(D, X), Gj(0) = x such
that ∫

T
ϕ ◦Gj(t)dσ(t) ≤

∫
T
ψj ◦ h(t)dσ(t) + ε.

That means EH(x) ≤
∫
T ψj ◦ h(t)dσ(t) on letting j tends to ∞ we get

EH(x) ≤
∫
T
F ◦ h(t)dσ(t) + ε.

On taking the infimum over all h and on letting ε tends to zero we get

EH(x) ≤ PF (x).

Fix x ∈ X, h ∈ O(D, X), with h(0) = x, ε > 0 and ψ a continuous function bigger
than F . Let t0 ∈ T there is g0 ∈ O(D,Cn) such that g0(0) = 0, h(t0) + g0 ∈ B and∫

T
ϕ(h(t0) + g0(z))dσ(z) < ψ ◦ h(t0) + ε/2.

We may assume that the map h(t0)+g0 belongs to B1. Let U0 ⊂⊂ W be a neighborhood
of h(t0) + g0(T). Take a continuous function B0 ∈ C(U0) bigger than ϕ in U0 such that

(2)

∫
T
B0(h(t0) + g0(z))dσ(z) < ψ ◦ h(t0) + ε.

Extend B0 to a continuous function on X. As U0 and X are open, B0 and ψ are contin-
uous, then there is an open arc I0 containing t0 such that

{h(t) + g0(z), t ∈ I0, z ∈ D} ⊂⊂ X and {h(t) + g0(z), t ∈ I0, z ∈ T} ⊂⊂ U0;

|B0(h(t) + g0(z))−B0(h(t0) + g0(z))| < ε for t ∈ I0, z ∈ T;

|ψ ◦ h(t)− ψ ◦ h(t0)| < ε, for t ∈ I0.
By compactness there is N > 0, points t1, · · · , tN ∈ T, open arcs I1, · · · , IN , holomorphic
maps g1, · · · , gN ∈ O(D,Cn), open sets U1 · · · , UN relatively compact either in W or in
X \W and B1, · · · , BN continuous functions on X with ϕ ≤ Bj on Uj for j = 1, · · · , N
such that

tj ∈ Ij, gj(0) = 0, h(tj) + gj ∈ B and T ⊂ ∪Ij;
{h(t) + gj(z), t ∈ Ij, z ∈ D} ⊂⊂ X and {h(t) + gj(z), t ∈ Ij, z ∈ T} ⊂⊂ Uj;

(3)

∫
T
Bj(h(tj) + gj(z))dσ(z) < ψ ◦ h(tj) + ε;

(4) |Bj(h(t) + g0(z))−Bj(h(tj) + g0(z))| < ε for t ∈ Ij, z ∈ T;

(5) |ψ ◦ h(t)− ψ ◦ h(tj)| < ε, for t ∈ Ij.
Choose δ0 very small such that for all j{

h(t) + gj(z) + x, ||x|| < δ0, t ∈ Ij, z ∈ D
}
⊂⊂ X;

{h(t) + gj(z) + x, ||x|| < δ0, t ∈ Ij, z ∈ T} ⊂⊂ Uj

and K ⊂⊂ X an open set containing

N⋃
j=1

{
h(t) + gj(z) + x, ||x|| < δ0, t ∈ Ij, z ∈ D

}
∪ h(D).
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Take C >
∑

j supK |Bj|+ supK |ψ|+ | supK ϕ| and disjoint closed arcs Jj ⊂ Ij such that

(6) Cσ(T \ ∪jJj) < ε.

By uniform continuity of Bj on K there is 0 < δ < δ0 such that

(7) |Bj(x1)−Bj(x2)| < ε, for all x1, x2 ∈ K with ||x1 − x2|| < δ, for all j.

Take a small open neighborhood Vj of Jj such that

(∪Ni=1,i 6=jJi) ∪ {0} ⊂ C \ Vj.

Set Kj = D \ Vj. By Lemma 2 for each i = 1, · · · , N there is a polynomial pi such that:

• pi(0) = 0 and pi(D) ⊂ D;
• ||gi ◦ pi(z)|| < δ/N for all z ∈ Ki;
•
∫
Ji
Bi(h(ti) + gi ◦ pi(t))dσ(t) < σ(Ji)

∫
TBi(h(ti) + gi(t))dσ(t) + ε/N .

Set

G(z) = h(z) +
N∑
i=1

gi ◦ pi(z) for all z ∈ D.

Then G ∈ O(D, K) and G(0) = h(0) and we have∫
T
ϕ ◦G(t)dσ(t) ≤

N∑
i=1

∫
Ji

ϕ ◦G(t)dσ(t) + ε ”by (6)

=
N∑
i=1

∫
Ji

ϕ

(
h(t) + gi ◦ pi(t) +

N∑
j=1,i 6=j

gj ◦ pj(t)

)
dσ(t) + ε

≤
N∑
i=1

∫
Ji

Bi

(
h(t) + gi ◦ pi(t) +

N∑
j=1,i 6=j

gj ◦ pj(t)

)
dσ(t) + ε

≤
N∑
i=1

∫
Ji

Bi (h(t) + gi ◦ pi(t)) dσ(t) + 2ε ”by of (7)

≤
N∑
i=1

∫
Ji

Bi (h(ti) + gi ◦ pi(t)) dσ(t) + 3ε ” by (4)

≤
N∑
i=1

σ(Ji)

∫
T
Bi (h(ti) + gi(t)) dσ(t) + 4ε ”by Lemma 2

≤
N∑
i=1

σ(Ji)ψ ◦ h(ti) + 5ε ”by (3),,

≤
N∑
i=1

∫
Ji

ψ ◦ h(t)dσ(t) + 6ε ”by (5)

≤
∫
T
ψ ◦ h(t)dσ(t) + 7ε by (6).

We get EH(x) ≤
∫
T ψ ◦ h(t)dσ(t) + 7ε for all ε > 0, continuous function ψ ≥ F and

h ∈ O(D, X) with h(0) = x. Hence EH(x) ≤ PF (x). �
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Consider v : X → R. Recall that

lim sup
y→x

v(y) = lim
r→0

sup{v(y), y ∈ B(x, r)}, x ∈ X.

lim sup
y→x, y∈Y

v(y) = lim
r→0

sup{v(y), y ∈ B(x, r) ∩ Y }, x ∈ Y .

In what follows the word thin means Cn-thin.

Definition 1. Let Y be a subset of Cn and x ∈ Cn. Then Y is non-thin at x if
x ∈ Y \ {x} and if, for every plurisubharmonic function u defined on a neighborhood of
x one has

lim sup
z→x, z∈Y \{x}

u(z) = u(x).

As example we have, a connected set containing more than one point is non-thin at
every point of its closure see Theorem 3.8.3 in [4]. If h ∈ O(D,Cn) then the set h([0, 1])
is not thin at any of its points see Corollary 4.8.5 in [5].

Theorem 4. Let X ⊂ Cn be a domain and W ⊂ X. Suppose that

i) {x ∈ X, there is f ∈ B such that f(0) = x} = X;
ii) X \W and W are subdomains of X.

Then EH ∈ PSH(X) and

sup{v(x), v ∈ PSH(X), v ≤ ϕ} = inf

{
1

2π

∫ 2π

0

ϕ ◦ f(eiθ)dθ, f ∈ O(D, X), f(0) = x

}
.

Proof. The condition i) allows us to define F . Condition ii) ensures that the sets W
and X \W are non-thin at points of ∂W. We have

PF ≤ EH ≤ PF ≤ ϕ.

Indeed, the third inequality holds because, we have PF ≤ F ≤ ϕ in X \ ∂W (because
of constant maps in B). Let x ∈ X ∩ ∂W , we may assume that ϕ(x) = ϕ∗2(x). As
PF ∈ PSH(X) and W is non-thin at x then

PF (x) = lim sup
z→x, z∈W

PF (z) ≤ lim sup
z→x, z∈W

ϕ2(z) = ϕ∗2(x) = ϕ(x).

This for all x ∈ ∂W. Thus PF ≤ ϕ on X. The second holds because of Lemma 3. The
first one holds because PF ∈ PSH(X) and PF ≤ ϕ. Hence PF = EH ∈ PSH(X).
Obviously for all u ∈ PSH(X), u ≤ ϕ we have u ≤ EH hence sup{v, v ∈ PSH(X), v ≤
ϕ} ≤ EH. As EH ∈ PSH(X) and less than ϕ then we have equality. �

As ϕ may be, not upper semicontinuous then our formula generalizes Poletsky’s classical
formula . For properties of thin sets we refer to [4] and [5].

3. Thinness

Let u be a function plurisubharmonic on a neighborhood of z0 ∈ Cn. Even though u
may be discontinuous at z0, it is still always true that

lim sup
z→z0

u(z) = u(z0).

By upper semicontinuity, we certainly have lim supz→z0 u(z) ≤ u(z0), and if the inequal-
ity were strict, then u would violate the submean inequality on a neighborhood of z0. The
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situation may change if we take the limit along a set U whose closure contains z0. For
instance let (zn)n>1 be a sequence converging to z0 and U = {z1, z2, · · · }. It is easy to
find u ∈ PSH(Cn) such that

lim sup
z→z0,z∈U

u(z) < u(z0).

We say that U is thin at z0. In this section we will give a characterization of thinness
of a set at a given point in Cn in terms of analytic discs.

Theorem 5. Let U ⊂ Cn be open and x ∈ Cn. Then the two conditions are equivalent:

i) U is non-thin at x;
ii) For all ε > 0, neighborhood V of x there is f ∈ O(D, V ) such that f(0) = x and

σ(T ∩ f−1(V ∩ U \ {x})) > 1− ε.

Proof. Assume i). Let ε > 0 and V a neighborhood of x. Let V1 ⊂⊂ V be a small
ball centered at x. Then by Poletsky’s classical theorem the function u(U\{x})∩V1,V1 is
plurisubharmonic in V1, where

u(U\{x})∩V1,V1(x) = inf{−σ(T ∩ f−1((U \ {x}) ∩ V1)), f ∈ O(D, V1), f(0) = x}.
Since U is non-thin at x then

u(U\{x})∩V1,V1(x) = lim sup
z→x, z∈U\{x}

u(U\{x})∩V1,V1(z) = −1,

thus there is f ∈ O(D, V ) such that f(0) = x and

−σ(T ∩ f−1(V ∩ U \ {x})) < −1 + ε.

Suppose ii). Let r0 > 0 and u ∈ PSH(B(x, r0)). For any 0 < r < r0 we set

cr = sup{u(z), z ∈ B(x, r) ∩ U \ {x}}.
Take M > | supB(x,r) u|. By ii) we have, for any ε > 0 there is fε ∈ O(D, B(x, r)) with

fε(0) = x such that
σ(T ∩ f−1ε (B(x, r) ∩ U \ {x})) > 1− ε.

Set A = T \ (T ∩ f−1ε ((U \ {x}) ∩B(x, r))) thus we have

u(x) ≤
∫
T
u ◦ fε(t)dσ(t) ≤

∫
T\A

u ◦ fε(t)dσ(t) +

∫
A

u ◦ fε(t)dσ(t)

≤ cr(1− σ(A)) +Mσ(A) ≤ cr + (|cr|+M)ε.

This for all ε > 0, hence when ε→ 0 we get u(x) ≤ cr. As r was taken arbitrarily then
we have

u(x) ≤ inf
r>0

cr = lim sup
z→x, z∈U\{x}

u(z) ≤ lim sup
z→x

u(z) = u(x).

This for all u plurisubharmonic in a neighborhood of x. Hence U is non-thin at x. �

In the light of Corollary 4.8.3 in [5] we have the following.

Corollary 6. Let Y ⊂ Cn and x ∈ Cn. Then the following conditions are equivalent

i) Y is non-thin at x;
ii) For every ε > 0, neighborhood V of x and every open set U containing Y \ {x}

there exists f ∈ O(D, V ) such that f(0) = x and

σ(T ∩ f−1(V ∩ U \ {x})) > 1− ε.
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For an open set X ⊂ Cn, u ∈ PSH(X) and K ⊂ X compact it is well known (by
the classical maximum principle) that supK u = sup∂K u. We will state a similar result
for certain subsets of X not necessarily compact.

Theorem 7. Let U ⊂⊂ X ⊂ Cn, where X is open. If U is non-thin at every point of
its closure, then for all u ∈ PSH(X) one has

sup
U
u = sup

∂U
u.

Proof. Let U be non-thin at every point of its closure. By the classical maximum
principle we have

sup
U
u ≤ sup

U

u = sup
∂U

u ≤ sup
∂U

u.

Let x ∈ ∂U and r > 0 small so that B(x, r) ⊂ X. As U is non-thin at x then

u(x) = inf
ρ>0

sup
U∩B(x,ρ)

u ≤ sup
U∩B(x,r)

u ≤ sup
U
u.

This for all x ∈ ∂U . Hence sup∂U u ≤ supU u. �

Corollary 8. Let X ⊂ Cn be open and U ⊂⊂ X be connected and u ∈ PSH(X), then

sup
U
u = sup

∂U
u.

Corollary 9. Let X ⊂ Cn be open and let U ⊂⊂ X be open. If U is non-thin at every
point of its closure, then

uU,X = uU,X .

Moreover if X is hyperconvex, then uU,X is continuous in X and limz→∂X uU,X(z) = 0.

Proof. Recall that

uU,X = sup{v ∈ PSH(X), v < 0, v|U ≤ −1};

uU,X = sup{v ∈ PSH(X)v < 0, v|U ≤ −1}.
Notice that for all v ∈ PSH(X)− with v ≤ −1 on U. We have v ≤ uU,X . Thus

uU,X ≤ uU,X .

As uU,X ∈ PSH(X)− and uU,X = −1 in U , then by Theorem 7, uU,X = −1 on U . Hence
uU,X is in the family defining uU,X . Thus uU,X ≤ uU,X .
If X is hyperconvex then by Proposition 4.5.3 in [5], uU,X is continuous on X, hence
uU,X is continuous and by Proposition 4.5.2 we have limz→∂X uU,X(z) = 0. �
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