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THE COMPLEX MONGE-AMPÈRE TYPE EQUATION ON

COMPACT HERMITIAN MANIFOLDS AND APPLICATIONS

NGOC CUONG NGUYEN

Abstract. We prove the existence and uniqueness of continuous solutions to
the complex Monge-Ampère type equation with the right hand side in Lp, p >

1, on compact Hermitian manifolds. Next, we generalise results of Eyssidieux,
Guedj and Zeriahi [EGZ09, EGZ11] to compact Hermitian manifolds which a
priori are not in the Fujiki class. These generalisations lead to a number of
applications: we obtain partial results on a conjecture of Tosatti and Weinkove
[TW12a] and on a weak form of a conjecture of Demailly and Paun [DP04].

Introduction

Let (X,ω) be a n-dimensional compact Hermitian manifold. Given a non-
negative function f ∈ Lp(X,ωn), p > 1, consider the complex Monge-Ampère
type equation

(0.1)
(ω + ddcϕ)n = eλϕfωn

ω + ddcϕ ≥ 0, λ ≥ 0,

for real-valued function ϕ, where dc = i
2π (∂̄ − ∂), ddc = i

π
∂∂̄.

In the smooth category, for λ > 0, given f positive and smooth Cherrier [Ch87]
proved the existence and uniqueness of the smooth admissible solution. Later on,
more general results are proved in this case by Hanani [Ha96a, Ha96b].

The problem is considerably more difficult for the case λ = 0. At that time
though many important a priori estimates were derived but the uniform estimate
was still missing for the continuity argument. Under various extra assumptions
the existence of a smooth admissible solution was obtained in [Ch87]. Recently,
the topic has been revived in the works of Guan-Li [GL10] and Tosatti-Weinkove
[TW10a, TW10b]. Ultimately, the existence was proved, in full generality, by pro-
viding the uniform estimate, by Tosatti and Weinkove [TW10b]. Since then, the
complex Monge-Ampère equation, both the elliptic and parabolic (the Chern-Ricci
flow) version, on compact Hermitian manifold was studied extensively (see [Nie13],
[Sun13a, Sun13b], [TW12b, TW12c, TWYang13], [ZZ11]).

On the other hand, by developing pluri-potential estimates on compact Hermit-
ian manifolds Dinew and Ko lodziej [DK12] were able to give another proof of the
uniform estimate which was inspired by [Ko l98]. This proof allows the right hand
side in Lp, p > 1, which has had many applications in Kähler geometry (see e.g.
[EGZ09], [PSS12]). This motivates the development of weak solutions theory for
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the equation (0.1) on compact Hermitian manifolds. Some geometric motivations
and potential applications of such an investigation are discussed in [Di14].

As a first step, for λ = 0, the existence of a continuous solution to the equation
(0.1) was proved in [KN13]. In this case the new technical tool is needed. We
wish to exploit further the results in [KN13] to study the complex Monge-Ampère
type equation. It may help to understand deeper some open problem in Hermitian
geometry.

For the case λ > 0, our first result is an extension of a theorem of Cherrier [Ch87]
to the degenerate right hand side.

Theorem 0.1. Let (X,ω) be a n-dimensional compact Hermitian manifold. Let
0 ≤ f ∈ Lp(X,ωn), p > 1, be such that

∫

X
fωn > 0. Fix λ > 0. Then, there exist

a unique continuous real-valued function ϕ on X satisfying

(ω + ddcϕ)n = eλϕfωn, ω + ddcϕ ≥ 0,

in the weak sense of currents.

Notice that we do not need to multiply the right hand side with a suitable
constant as we do in the case λ = 0 (see [TW10b], [KN13]). The following result
will shed light on that mysterious constant.

Corollary 0.2. Under assumptions of Theorem 0.1. For each 0 < ε ≤ 1 let ϕε
denote the unique continuous function solving

(ω + ddcϕε)
n = eεϕεfωn, ω + ddcϕε ≥ 0.

Suppose that a continuous real-valued function ϕ on X and a constant c > 0 solve

(ω + ddcϕ)n = cfωn, ω + ddcϕ ≥ 0.

Then, for any fixed x ∈ X,

c = lim
ε→0

eεϕε(x).

In particular, the constant c in [KN13, Theorem 0.1] is uniquely defined.

Tsuji [Ts88] and Tian-Zhang [TiZha06] studied the Kähler-Ricci flow (parabolic
Monge-Ampère equation) and its degenerate form on minimal algebraic varieties of
general type. Later, the ”finite energy” approach was introduced by Eyssidieux-
Guedj-Zeriahi [GZ05, GZ07, EGZ09] (see also [DiZh10]) building on the seminal
works of Cegrell and Ko lodziej [Ce98], [Ko l98, Ko l03]. Further advances in [EGZ09]
or [EGZ11] require the manifold to be at least in the Fujiki class, i.e. bimeromorphic
to a Kähler manifold. Using recent results in [DK12], [KN13], we are able to relax
those assumptions.

Theorem 0.3. Let (X,ω) be a n-dimensional compact Hermitian manifold. As-
sume that β ≥ 0 (semi-positive) is a smooth closed (1, 1)-form on X such that
∫

X
βn > 0. Let 0 ≤ f ∈ Lp(X,ωn), p > 1, be such that

∫

X
fωn > 0. Then, there

exists a unique continuous real-valued function ϕ solving

(0.2) (β + ddcϕ)n = eϕfωn, β + ddcϕ ≥ 0

in the weak sense of currents.

The key ingredient to prove Theorem 0.3 is a very precise uniform estimate for
the complex Monge-Ampère equation on compact Hermitian manifolds given in
[KN13]. Once the Monge-Ampère type equation (0.2) is solvable, we can adapt
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arguments [Ko l03] to get the stability estimates (see [DiZh10], [EGZ09, EGZ11]).
We get the following

Corollary 0.4. Under assumptions of Theorem 0.3. Assume that
∫

X

βn =

∫

X

fωn.

Then, there exists a unique continuous real-valued function ϕ, supX ϕ = 0, solving

(β + ddcϕ)n = fωn, β + ddcϕ ≥ 0.

Notice that in both results above we still need to invoke the viscosity approach
due to Eyssidieux-Guedj-Zeriahi [EGZ11] for the continuity of solutions.

Remark 0.5. So far the conjecture [DP04, Conjecture 0.8] is unsolved, so our results
are of interest. If the conjecture was true, under the assumptions of Theorem 0.3
and Corollary 0.4, the manifold would belong to the Fujiki class.

The solvability of the complex Monge-Ampère equation with the metric being
semi-positive gives a number of applications. First, we give a partial verification of
a conjecture of Tosatti-Weinkove [TW12a].

Theorem 0.6. Let X be a n-dimensional compact complex manifold. Suppose there
exists a class {β} ∈ H1,1

BC(X,R) which is semi-positive and satisfies
∫

X
βn > 0. Let

x1, ..., xN ∈ X be fixed points and let τ1, ..., τN be positive real numbers so that

(0.3)
N
∑

j=1

τnj <

∫

X

βn.

Then there exists a β-plurisubharmonic function ϕ with logarithmic poles at x1, ..., xN :

ϕ(z) ≤ τj log |z| +O(1),

in a coordinate neighbourhood (z1, ..., zn) centered at xj, where |z|2 = |z1|
2 + ... +

|zn|
2.

Here we require the class {β} to be semi-positive which is stronger than nef in
the conjecture (see [TW12a]). Tosatti and Weinkove proved their conjecture for
n = 2, 3 and they proved for general n ≥ 4 under the different assumptions: X is
Moishezon and {β} is rational.

The second application is a partial result on the weak form of a conjecture of
Demailly and Paun [DP04]. Recently, Chiose [Chi13] and Popovici [Po14] simplified
some arguments in [DP04]. Thanks to these simplifications and our results above
we get the following.

Theorem 0.7. Let (X,ω) be a n-dimensional compact complex manifold equipped

with the pluriclosed metric ω, i.e. ddcω = 0. Assume that {β} ∈ H1,1
BC(X,R) is a

semi-positive cohomology class satisfying
∫

X
βn > 0. Then {β} contains a Kähler

current T , i.e. T ≥ δω for some δ > 0.

If we can remove the pluriclosed assumption on ω in the theorem, then we would
get the weak form of [DP04, Conjecture 0.8]. So, our result supports the affirmative
answer of this conjecture.

The last application we wish to address is an improvement of a result of Gill
[Gil13]. It is related to the Chern-Ricci flow on smooth models of general type. It
is proved in [DiZh10], [EGZ09] that we may use the elliptic Monge-Ampère equation
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to get better regularity of solutions that are obtained by the Kähler-Ricci flow. We
can do the same for the complex Monge-Ampère equation on compact Hermitian
manifold and the Chern-Ricci flow (see Section 4.2 for the details).

The organisation of the note is as follows. In Section 1 we give several estimates
for the Monge-Ampère operator. These estimates are non-trivial extensions from
the Kähler setting to the Hermitian one. In Section 2 we prove Theorem 0.1 and
Corollary 0.2. Section 3 deals with the degenerate Monge-Ampère equations, where
Theorem 0.3 and Corollary 0.4 are proved by using extensively results in Sections 1
and 2. Section 4 is devoted to applications: Theorems 0.6, 0.7 and the regularity
of the Chern-Ricci flow.
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inspiring discussions on the subject and encouragement me to write down this
paper. It is improved significantly thanks to his thorough reading and editing.
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seminar for their interests. Especially, I would like thank S lawomir Dinew for his
useful comments and for sending me his preprint [Di14]. The work was supported
by NCN grant 2013/08/A/ST1/00312.

1. Pluripotential estimates on compact Hermitian manifolds

In this section we give several pluripotential estimates which are generalizations
from the case of compact Kähler manifolds to compact Hermitian manifolds. Be-
cause of the non closedness of metrics the proofs are often more complicated than
their counterparts in the Kähler setting. However, the generalised formulations
often keep the same spirit, up to the extra terms, as the original forms.

Let (X,ω) be a n-dimensional compact Hermitian manifold. The class of ω-
plurisubharmonic (ω-psh) function is defined in the same way as on the Käher
manifold. A function u : X → [−∞,+∞[ is ω-psh if it is upper semi-continuous,
u ∈ L1(X,ωn) and

ω + ddcu ≥ 0.

The set of all ω-psh functions on X is denoted by PSH(ω). Bounded ω-psh func-
tions have most properties as in the case ω is Kähler, though now ω does not have a
local potential. By using linear algebra we can define the Monge-Ampère operator
for bounded ω-psh function. Hence, the notion of capω and the Bedford-Taylor con-
vergence theorem etc.... hold true. We refer the reader to [DP04], [DK12], [KN13],
[Di14] for more basic properties of ω-psh functions.

Let us fix some notations that we will use throughout the note. The ”curvature”
constant of the metric ω is denoted by B = B(ω) > 0 and it satisfies

(1.1) −Bω2 ≤ 2nddcω ≤ Bω2, −Bω3 ≤ 4n2dω ∧ dcω ≤ Bω3.
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The positive constants C,C′ = C(X,ω) > 0 will appear at many places, we simply
call them to be uniform constants. Unless otherwise stated, they may differ from
place to place. When the volume form ωn is clear in the context we denote for
r > 0,

‖.‖r =

(∫

X

|.|rωn
)

1

r

and ‖.‖∞ = sup
X

|.|.

We often write ωϕ := ω + ddcϕ for ϕ ∈ PSH(ω) and Lr(ωn) := Lr(X,ωn).
The Chern - Levine - Nirenberg type inequality with ω being a Hermitian metric

is as follows.

Proposition 1.1 (CLN inequality). Let ψ, ϕ ∈ PSH(ω) be such that supX ψ = 0
and 0 ≤ ϕ ≤ 1. Then, we have

∫

X

|ψ|ωnϕ ≤ C

with a uniform constant C > 0.

Remark 1.2. It also holds [DK12, Proposition 2.3] that for every ϕ1, ..., ϕn ∈
PSH(ω) and 0 ≤ ϕ1, ..., ϕn ≤ 1,

∫

X

ωϕ1
∧ ... ∧ ωϕn

≤ C

where C > 0 is a uniform constant. We also call those CLN inequalities. If we
take ϕ1 = ... = ϕn = ϕ ∈ PSH(ω), then CLN inequality shows that the notion of
capacity [BT82, Ko l05] for a Hermitian metric ω on X makes sense. Let E ⊂ X be
a Borel set, following [Ko l05, DK12] we denote

(1.2) capω(E) := sup

{∫

E

(ω + ddcρ)n : ρ ∈ PSH(ω), 0 ≤ ρ ≤ 1

}

.

We refer the reader to [DK12], [Di14] for basic properties of this capacity. One
should keep in mind that because of the positivity of ω this capacity is comparable
with the local Bedford-Taylor capacity cap′ω(E) [Ko l05, p. 52] (see also [GZ05,
Proposition 3.10]).

Proof of Proposition 1.1. It is similar to the case of ϕ = 0 [DK12, Proposition 2.1].
Let {Bj(s)}j∈J be a finite covering of X , where Bj(s) = B(xj , s) is the ball centered
at xj of radius s > 0. We may choose s > 0 small enough such that for every j ∈ J
there exists a smooth negative function ρj on Bj(3s) satisfying

ω ≤ ddcρj on Bj(2s).

Thus, on Bj(2s),
ωnϕ ≤ [ddc(ρj + ϕ)]

n
.

Then
∫

X

|ψ|ωnϕ ≤
∑

j∈J

∫

Bj(s)

|ψ|ωnϕ ≤
∑

j∈J

∫

Bj(s)

|ψ + ρj |(dd
cuj)

n,

where uj = ρj + ϕ, ψ + ρj belong to PSH(Bj(2s)). Now, we are going to estimate
from above for each term on the right hand side. By the L1− CLN inequality [De09,
Chap. 3, Pro. 3.11] we have

∫

Bj(s)

|ψ + ρj |(dd
cuj)

n ≤ C(s)‖uj‖
n
L∞(Bj(2s))

∫

Bj(2s)

|ψ + ρj |ω
n.
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Since 0 ≤ ϕ ≤ 1 and ρj is bounded on Bj(2s), it follows that
∫

Bj(s)

|ψ + ρj |(dd
cuj)

n ≤ C′(s)

(∫

X

|ψ|ωn + ‖ρj‖L∞(Bj(2s))

∫

X

ωn
)

,

where C′(s) is independent of ψ. By [DK12, Proposition 2.1] the right hand side is
uniformly bounded. Finally, since J is a finite set, the proof follows. �

Thanks to the existence of continuous solutions to the complex Monge-Ampère
equation with the right hand side in Lp(ωn), p > 1, we get the following the
L1-uniform bound. It seems that we may get the similar statement as in [GZ05,
Proposition 2.7], but the form given below is sufficient for our applications.

Corollary 1.3. Let 0 ≤ F ∈ Lp(ωn), p > 1, be such that
∫

X
Fωn > 0. Then, there

exists a uniform constant C = C(X,ω, ‖F‖p) > 0 such that for any ψ ∈ PSH(ω)
with supX ψ = 0,

∫

X

|ψ|Fωn < C.

Proof. Using [KN13, Theorem 0.1], we solve u ∈ PSH(ω)∩C(X), supX u = 0, and
c > 0 satisfying

(ω + ddcu)n = cFωn.

Moreover, by [KN13, Lemma 5.9] there exists c0 = C(‖F‖p, ω,X) > 0 such that

(1.3) c0 < c <
1

c0
.

According [KN13, Corollary 5.6], there exists H = H(c0, ‖F‖p, X, ω) > 0 such that

−H ≤ u ≤ 0.

Therefore, it is not difficult to see the corollary follows from Proposition 1.1 with
the constant C > 0 also depending on H . �

The next result will be a version of the Cauchy-Schwarz inequality on compact
Hermitian manifolds. It has been useful in [TW10b]. The statement is similar to
the classical one, however there appears a uniform constant to compensate for the
torsion of ω.

Proposition 1.4 (Cauchy-Schwarz inequality). Let T be a positive current of
bidegree (n − 2, n − 2) of the form ωv1 ∧ ωv2 ∧ ... ∧ ωvn−2

, where v1, ..., vn−2 ∈
PSH(ω) ∩ L∞(X). Then, for any u ∈ PSH(ω) ∩ L∞(X),

∣

∣

∣

∣

∫

X

du ∧ dcω ∧ T

∣

∣

∣

∣

≤ C

(∫

X

du ∧ dcu ∧ ω ∧ T

)
1

2

(∫

X

ω2 ∧ T

)
1

2

,

where 0 < C = C(X,ω) is a uniform constant.

Proof. By partition of unity (a finite covering), it is enough to show that for the
unit ball U ⊂ Cn we have

∣

∣

∣

∣

∫

U

du ∧ dcω ∧ T

∣

∣

∣

∣

≤ C

(∫

U

du ∧ dcu ∧ ω ∧ T

)
1

2

(∫

U

ω2 ∧ T

)
1

2

.

Hence, the proof is local. We can write

ω = i
∑

j,k

ajk(z)dzj ∧ dz̄k on U
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where ajk(z) ∈ C∞(U). Hence,

dω = i
∑

j,k

dajk(z) ∧ dzj ∧ dz̄k, dcω = i
∑

j,k

dcajk(z) ∧ dzj ∧ dz̄k.

The polarisation of dzj ∧ dz̄k has the form

4dzj ∧ dz̄k = d(zj + zk) ∧ d(zj + zk) − d(zj − zk) ∧ d(zj − zk)

+ id(zj + izk) ∧ d(zj + izk) − id(zj − izk) ∧ d(zj − izk),

:= η1 ∧ η̄1 − η2 ∧ η̄2 + iη3 ∧ η̄3 − iη4 ∧ η̄4.

It follows that
∣

∣

∣

∣

∫

U

du ∧ dcajk ∧ idzj ∧ dz̄k ∧ T

∣

∣

∣

∣

≤

4
∑

m=1

∣

∣

∣

∣

∫

U

du ∧ dcajk ∧ iηm ∧ η̄m ∧ T

∣

∣

∣

∣

.

Now we can use the classical Cauchy-Schwarz inequality (see e.g. [Ko l05, Schwarz’s
inequality p.7]) to each term of the right hand side. Let us denote by η one of the
forms: η1, η2, η3, η4. Then,

∣

∣

∣

∣

∫

U

du ∧ dcajk ∧ iη ∧ η̄ ∧ T

∣

∣

∣

∣

≤

(∫

U

du ∧ dcu ∧ iη ∧ η̄ ∧ T

)
1

2

×

×

(∫

U

dajk ∧ d
cajk ∧ iη ∧ η̄ ∧ T

)
1

2

.

Observe that 0 ≤ iη ∧ η̄ ≤ Cω and 0 ≤ dajk ∧ d
cajk ∧ η ∧ η̄ ≤ Cω2 on Ū for some

uniform C > 0. Hence,
∫

U

du ∧ dcu ∧ iη ∧ η̄ ∧ T ≤ C

∫

U

du ∧ dcu ∧ ω ∧ T

and
∫

U

dajk ∧ d
cajk ∧ iη ∧ η̄ ∧ T ≤ C

∫

U

ω2 ∧ T.

Altogether we get that
∣

∣

∣

∣

∫

U

du ∧ dcajk ∧ idzj ∧ dz̄k ∧ T

∣

∣

∣

∣

≤ C

(∫

U

du ∧ dcu ∧ ω ∧ T

)
1

2

(∫

U

ω2 ∧ T

)
1

2

≤ C

(∫

X

du ∧ dcu ∧ ω ∧ T

)
1

2

(∫

X

ω2 ∧ T

)
1

2

.

Thus, the lemma follows. �

If dω = 0, then by the Stokes theorem, for any ρ ∈ PSH(ω) ∩ L∞(X),

(1.4)

∫

X

ωnρ =

∫

X

ωn.

This will be no longer true for a general Hermitian metric ω and the counter-
example can be easily found. In fact, for compact complex surfaces, i.e n = 2, the
inequality (1.4) holds if and only if ddcω = 0 (i.e. ω is a Gauduchon metric) by
Lemma 4.6.

From the potential theoretic point of view it is often important to get bounds for
the total mass of Monge-Ampère operators or the Monge-Ampère energy of ω-psh
functions. Below we will consider estimates of those kinds. As we will see they
are more useful when the ”curvature”constant of the considered metric is small.
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For example, the metric β + εω, where 0 < ε << 1 and β is a smooth closed
semi-positive (1, 1)-form.

Let Ω be another Hermitian metric on X such that Ω ≤ Cω for some uniform
C > 0. Suppose that there exists 0 < BΩ < 1 satisfying

(1.5) −BΩω
2 ≤ 2nddcΩ ≤ BΩω

2, −BΩω
3 ≤ 4n2dΩ ∧ dcΩ ≤ BΩω

3.

Then, the total mass of the Monge-Ampère operator of a bounded Ω-psh function
is the total mass of Ωn modulo the uniform norm of that function multiplied the
curvature constant.

Proposition 1.5. Suppose that the Hermitian metric Ω satisfies (1.5). Let u ∈
PSH(Ω) ∩ L∞(X) be such that supX u = 0. Then,

∫

X

Ωn −BΩ(1 + ‖u‖∞)nC ≤

∫

X

(Ω + ddcu)n ≤

∫

X

Ωn +BΩ(1 + ‖u‖∞)nC,

where C > 0 is a uniform constant.

Proof. The proof is only a simple application of the Stokes theorem and induction
process, so we only sketch it. To simplify notation we write Ωu := Ω + ddcu. Now,
we compute

ddc[Ωlu ∧ Ωn−l−1] = lddcΩ ∧ Ωl−1
u ∧ Ωn−l−1

+ l(l − 1)dΩ ∧ dcΩ ∧ Ωl−2
u ∧ Ωn−l−1

+ l(n− l − 1)dΩ ∧ dcΩ ∧ Ωl−1
u ∧ Ωn−l−2

+ (n− l − 1)ddcΩ ∧ Ωlu ∧ Ωn−l−2

+ l(n− l − 1)dΩ ∧ dcΩ ∧ Ωl−1
u ∧ Ωn−l−2

+ (n− l − 1)(n− l − 2)dΩ ∧ dcΩ ∧ Ωlu ∧ Ωn−l−3,

where 0 ≤ l ≤ n− 1. Recall from (1.5) that 0 < BΩ < 1 and the metric Ω satisfies

−BΩω
2 ≤ 2nddcΩ ≤ BΩω

2, −BΩω
3 ≤ 4n2dΩ ∧ dcΩ ≤ BΩω

3.

It follows that there exists Cn > 0 depending only on dimension such that

(1.6) −BΩT (u, ω,Ω, l) ≤ ddc[Ωlu ∧ Ωn−l−1] ≤ BΩT (u, ω,Ω, l),

where

T (u, ω,Ω, l) =









ω2 ∧ Ωl−1
u ∧ Ωn−l−1 + ω3 ∧ Ωl−2

u ∧ Ωn−l−1

+ ω3 ∧ Ωl−1
u ∧ Ωn−l−2 + ω2 ∧ Ωlu ∧ Ωn−l−2

+ ω3 ∧ Ωl−1
u ∧ Ωn−l−2 + ω3 ∧ Ωlu ∧ Ωn−l−3









with the convention that Ωl = Ωlu = 1 for l ≤ 0. The proof goes by induction. First
we write

∫

X

Ωnu =

∫

X

Ωn +

∫

X

ddcu ∧ Ωn−1 + ...+

∫

X

ddcu ∧ (Ω + ddcu)n−1.

By Stokes’ theorem we have, for 0 ≤ l ≤ n− 1,
∫

X

ddcu ∧ Ωlu ∧ Ωn−l−1 =

∫

X

uddc[Ωlu ∧ Ωn−k−1].
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Therefore, by (1.6) and u ≤ 0,
∫

X

Ωnu ≤

∫

X

Ωn +BΩ‖u‖∞

∫

X

n−2
∑

l=0

T (u, ω,Ω, l).

Similarly,
∫

X

Ωnu ≥

∫

X

Ωn −BΩ‖u‖∞

∫

X

n−2
∑

l=0

T (u, ω,Ω, l).

Observe that the highest power of Ωu in each term of T (u, ω,Ω, l) is less than
n − 1, i.e. this power decreased by 1 after applying the Stokes theorem. Thus, it
is by the induction hypothesis and the Stokes theorem that we can justify that for
0 ≤ l ≤ n− 2

∫

X

T (u, ω,Ω, l) ≤ (1 + ‖u‖∞)n−1C.

and thus the proposition follows. �

The next result is the comparison of the Monge-Ampère energy of Ω-psh func-
tions. If Ω is Kähler, i.e. BΩ = 0, it is named as the fundamental inequality in
[GZ07, Lemma 2.3].

Proposition 1.6. Suppose that Ω = β + εω with β being a closed semi-positive
(1, 1)-form and 0 < ε < 1. Let u, v ∈ PSH(Ω) ∩ L∞(X) be such that u ≤ v ≤ −1.
Then,

∫

X

(−v)(Ω + ddcv)n ≤ 2n
∫

X

(−u)(Ω + ddcu)n +BΩ‖u‖
2n
∞‖v‖n∞C,

where BΩ = εB is the constant in (1.5).

To prove this proposition we need a Cauchy-Schwarz type inequality for the
metric Ω, which is an immediate consequence of Proposition 1.4.

Lemma 1.7. Let T be a positive current of bidegree (n − 2, n − 2) of the form
ωv1 ∧ ωv2 ∧ ... ∧ ωvn−2

, where v1, ..., vn−2 ∈ PSH(ω) ∩ L∞(X). Let Ω := β + εω,
where β is a semi-positive (1, 1)-form and 0 < ε < 1. There exists a uniform
constant 0 < C (independent of ε) such that for any u ∈ PSH(Ω) ∩ L∞(X)

∣

∣

∣

∣

∫

X

du ∧ dcΩ ∧ T

∣

∣

∣

∣

≤ BΩC

(∫

X

du ∧ dcu ∧ ω ∧ T +

∫

X

ω2 ∧ T

)

,

where BΩ = εB is the constant satisfying (1.5).

Proof. We only need to observe that

dcΩ = εdcω

and B > 0 is a fixed uniform constant. Then, a simple application of Proposition 1.4
will give us the desired inequality. �

We are going to prove Proposition 1.6.

Proof. Since 1 ≤ −v ≤ −u, we can replace −v by −u right away, then use the
Stokes theorem to interchange roles of u and v in the integral and so on. This is
how it was done for compact Kähler manifolds. However, ω now is not closed, each
time one applies the Stokes theorem some extra terms appear. The Cauchy-Schwarz
type inequality and Proposition 1.5 are used to estimate these terms.
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We write Ωv = Ω + ddcv. Then

(1.7)

∫

X

−vΩv ∧ Ωn−1 ≤

∫

X

−uΩv ∧ Ωn−1 =

∫

X

−uΩn +

∫

X

−uddcv ∧ Ωn−1.

First, we are going to show that

(1.8)

∫

X

−uΩn ≤

∫

X

− uΩu ∧ Ωn−1+

+BΩ‖u‖
2
∞Cn

∫

X

(

ω2 ∧ Ωn−2 + ω3 ∧ Ωn−3
)

and

(1.9)

∫

X

−uddcv ∧ Ωn−1 ≤

∫

X

−uΩu ∧ Ωn−1+

+BΩ‖u‖
2
∞‖v‖∞C

∫

X

(ω2 ∧ Ωn−2 + ω3 ∧ Ωn−3 + ω4 ∧ Ωn−4).

To prove (1.8), we write
∫

X

−uΩn =

∫

X

−uΩu ∧ Ωn−1 +

∫

X

uddcu ∧ Ωn−1.

By Stokes’ theorem
∫

X

−uddcu ∧ Ωn−1 =

∫

X

du ∧ dcu ∧ Ωn−1 + (n− 1)

∫

X

udu ∧ dcΩ ∧ Ωn−2.

Again,

2

∫

X

udu ∧ dcΩ ∧ Ωn−2 =

∫

X

d(−u)2 ∧ dcΩ ∧ Ωn−2

=

∫

X

−(−u)2ddcΩ ∧ Ωn−2 − (n− 2)

∫

X

(−u)2dΩ ∧ dcΩ ∧ Ωn−3

≥ −BΩ‖u‖
2
∞

∫

X

[

ω2 ∧ Ωn−2 + ω3 ∧ Ωn−3
]

.

So, as
∫

X
du ∧ dcu ∧ Ωn−1 ≥ 0, we get that

∫

X

−uddcu ∧ Ωn−1 ≥ −
(n− 1)

2
BΩ‖u‖

2
∞

∫

X

[

ω2 ∧ Ωn−2 + (n− 2)ω3 ∧ Ωn−3
]

.

Thus, (1.8) is established.
We continue to prove (1.9). By the Stokes theorem

(1.10)

∫

X

−uddcv ∧ Ωn−1 =

∫

X

−vddcu ∧ Ωn−1

− 2(n− 1)

∫

X

vdu ∧ dcΩ ∧ Ωn−2

+ (n− 1)(n− 2)

∫

X

−vudΩ ∧ dcΩ ∧ Ωn−3.

We proceed to estimate the right hand side of (1.10). The first term is bounded as
follows.

(1.11)

∫

X

−vddcu ∧ Ωn−1 ≤

∫

X

−uΩu ∧ Ωn−1.
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The last term, according to (1.5), satisfies

(1.12) (n− 1)(n− 2)

∫

X

−vudΩ ∧ dcΩ ∧ Ωn−3 ≤ BΩ‖u‖∞‖v‖∞

∫

X

ω3 ∧ Ωn−3.

For the second term, we apply Lemma 1.7 to T = −vΩn−2, then we get

(1.13)

∫

X

−vdcu ∧ dΩ ∧ Ωn−2 ≤ BΩC









∫

X

−vdu ∧ dcu ∧ ω ∧ Ωn−2+

+

∫

X

−vω2 ∧ Ωn−2









where C > 0 depends only on X,ω. It follows that the right hand side of (1.13) is
bounded by

(1.14) BΩ‖v‖∞C

(∫

X

du ∧ dcu ∧ ω ∧ Ωn−2 +

∫

X

ω2 ∧ Ωn−2

)

.

Moreover, since 2du ∧ dcu = ddc(−u)2 − 2uddcu, we have
∫

X

du ∧ dcu ∧ ω ∧ Ωn−2 =

∫

X

ddc(−u)2 ∧ ω ∧ Ωn−2 − 2

∫

X

uddcu ∧ ω ∧ Ωn−2

=

∫

X

(−u)2ddc[ω ∧ Ωn−2] + 2

∫

X

(−u)Ωu ∧ ω ∧ Ωn−2

− 2

∫

X

(−u)Ω ∧ ω ∧ Ωn−2,

where in the second equality we used the Stokes theorem. From this, it is clear that
∫

X

du ∧ dcu ∧ ω ∧ Ωn−2 ≤ ‖u‖2∞C

∫

X

(ω2 ∧ Ωn−2 + ω3 ∧ Ωn−3 + ω4 ∧ Ωn−4).

Combining this and (1.14), then (1.13), we obtain

(1.15)

∫

X

vdcu ∧ dΩ ∧ Ωn−2 ≤

≤ BΩ‖u‖
2
∞‖v‖∞C

∫

X

(ω2 ∧ Ωn−2 + ω3 ∧ Ωn−3 + ω4 ∧ Ωn−4).

Then, (1.9) follows from (1.11), (1.12) and (1.15).
According to (1.7), (1.8) and (1.9), we have

∫

X

(−v)Ωv ∧ Ωn−1 ≤ 2

∫

X

(−u)Ωu ∧ Ωn−1 +BΩ‖u‖
2
∞‖v‖∞C.

Because

dΩv = dΩ, dcΩv = dcΩ,

we may replace Ω by Ωv in all argument above. Then, we get

(1.16)

∫

X

(−v)Ωnv ≤ 2

∫

X

(−u)Ωu ∧ Ωn−1
v +BΩ‖u‖

2
∞‖v‖n∞C,

where the constant ‖v‖n−1
∞ C > 0, by Proposition 1.5, is the upper bound for

∫

X

(ω2 ∧ Ωn−2
v + ω3 ∧ Ωn−3

v + ω4 ∧ Ωn−4
v )
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instead of
∫

X
(ω2 ∧Ωn−2 +ω3∧Ωn−3 +ω4∧Ωn−4) on the right hand side of (1.15).

Similarly, we show by induction (0 < BΩ < 1 and u, v ≤ −1) that
∫

X

ωk ∧ Ωn−ku ≤ ‖u‖n−k∞ C,

∫

X

ωk ∧ Ωn−kv ≤ ‖v‖n−k∞ C.

Thus, we have seen in (1.16) that one term Ωv is replaced by Ωu. We continue
replacing Ωn−1

v by Ωu ∧ Ωn−2
v and so on. Finally,

∫

X

(−v)(Ω + ddcv)n ≤ 2n
∫

X

(−u)(Ω + ddcu)n +BΩ‖u‖
2n
∞‖v‖n∞C.

Thus, the proof is finished. �

On a general compact Hermitian manifold X there may not exist a smooth
closed semi-positive (1, 1) form β such that

∫

X
βn > 0 and there are also non-

Kähler manifolds possessing such forms (see e.g. [Chi13, Example 1.8, 1.5]). If
such a form exists, then the notion capβ makes sense and more importantly the
volume-capacity inequality ([Ko l98, Ko l05], [EGZ09], [DePa10]) still holds.

Proposition 1.8. [DePa10, Lemma 2.9] Let (X,ω) be a n-dimensional compact
Hermitian manifold. Assume that β is a smooth closed semi-positive (1, 1)-form on
X satisfying

∫

X
βn > 0. We define for any Borel set E ⊂ X,

capβ(E) = sup

{
∫

E

(β + ddcv)n : v ∈ PSH(X, β), 0 ≤ v ≤ 1

}

,

where PSH(X, β) is the set of all β-psh functions on X. Then, there exists uniform
constant a, C > 0 such that

V olω(E) =

∫

E

ωn ≤ C exp



−
a

cap
1

n

β (E)



 .

We end this section with the mixed type inequality in the Hermitian setting. We
refer the reader to [Di09] for the most general form of this kind of inequality.

Lemma 1.9. Let 0 ≤ f, g ∈ L1(ωn) and u, v ∈ PSH(ω) ∩ L∞(X). Suppose that
ωnu ≥ fωn and ωnv ≥ gωn on X. Then for k = 0, ..., n

ωku ∧ ω
n−k
v ≥ f

k
n g

n−k
n ωn on X.

In particular, for 0 < δ < 1,

ωnδu+(1−δ)v ≥
[

δf
1

n + (1 − δ)g
1

n

]n

ωn on X.

Proof. This is a local problem. The proof is a consequence of the solvability of the
Dirichlet problem and the stability estimates for solutions to the Monge-Ampère
equation in a ball in Cn. Notice that the background form in the equation is the
Hermitian form ω. The results in [KN13, Section 4] are enough for the proof as in
[Ko l05, Lemma 6.2]. �
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2. The complex Monge-Ampère type equations

Let (X,ω) be a n-dimensional compact Hermitian manifold. In this section, we
are going to study the weak solutions to the equation

(2.1)
ϕ ∈ PSH(ω) ∩ L∞(X),

(ω + ddcϕ)n = eλϕfωn, λ ≥ 0,

where 0 ≤ f ∈ Lp(ωn), p > 1.
The continuous solutions to the equation (2.1) for λ = 0 were recently obtained

in [KN13] and we will use the results in [KN13] to study the case λ > 0. The
difference is that we get not only the existence but also the uniqueness of the
continuous solution.

When λ > 0, after a rescaling, we only need to consider λ = 1, i.e. the equation

(2.2) (ω + ddcϕ)n = eϕfωn

where ϕ ∈ PSH(ω) ∩ L∞(X) and 0 ≤ f ∈ Lp(ωn), p > 1.
When f > 0 and f is smooth Cherrier [Ch87] proved that there exists unique

smooth solution. Our result can be considered as an extension of his result for
non-negative right hand side in Lp(ωn), p > 1.

Theorem 2.1. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫

X
fωn > 0, then the

equation (2.2) has a unique continuous solution.

Remark 2.2. The assumption
∫

X
fωn > 0 is also necessary to guarantee the exis-

tence of a bounded solution to the equation (see [KN13, Remark 5.7]).

The uniqueness is just a consequence of the following statement.

Lemma 2.3. Suppose that ϕ, ψ ∈ PSH(ω) ∩ L∞(X) satisfy

(ω + ddcϕ)n = eϕfωn, (ω + ddcψ)n = eψgωn

with 0 ≤ f, g ∈ Lp(ωn), p > 1. If f ≤ g, then ψ ≤ ϕ. In particular, there is at
most one function ϕ ∈ PSH(ω) ∩C(X) such that

(ω + ddcϕ)n = eϕfωn.

Proof. We argue by contradiction. Suppose that {ψ > ϕ} is non-empty. Then,
m = infX(ϕ − ψ) < 0. Fix 0 < ε << 1 to be determined later, and denote by
m(ε) = infX [ϕ− (1 − ε)ψ]. It is clear that

m− ε‖ψ‖∞ ≤ m(ε) ≤ m+ ε‖ψ‖∞.

Hence, on U(ε, s) := {ϕ < (1 − ε)ψ +m(ε) + s} we have

(2.3) ωn(1−ε)ψ ≥ (1 − ε)neψgωn ≥ (1 − ε)neϕ−m−2ε‖ψ‖∞−sgωn.

The modified comparison principle [KN13, Theorem 0.2] reads for 0 < s < ε0 =
ε3

16B ,
∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωn(1−ε)ψ ≤ (1 +
Cs

εn
)

∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωnϕ

where C > 0 is a uniform constant. According to (2.3) we get

(1 − ε)ne−m−2ε‖ψ‖∞−s

∫

U(ε,s)

eϕfωn ≤ (1 +
Cs

εn
)

∫

U(ε,s)

eϕfωn.



14 NGOC CUONG NGUYEN

Note that for every 0 < s < ε0
∫

U(ε,s)

eϕfωn =

∫

{ϕ<(1−ε)ψ+m(ε)+s}

ωnϕ > 0.

Since m < 0, we may choose 0 < ε so small that

(1 − ε)ne−
m
2
−2ε‖ψ‖∞ > 1 + b

for some b = b(m, ε) > 0. Thus, we get for every 0 < s < min{ε0,−
m
2 } that

0 < b ≤
Cs

εn
.

It is impossible when s > 0 is small enough. Thus, the proof follows. �

By examining the above proof, it is quite easy to get the following useful fact
which is obvious in the Kähler case (dω = 0).

Corollary 2.4. If u, v ∈ PSH(ω) ∩ L∞(X) satisfy

ωnu ≤ c ωnv

for some c > 0, then c ≥ 1.

Before proving the existence of a continuous solution we first give an a priori
estimate. This estimate will frequently be used in the sequel.

Proposition 2.5. Let (X,ω) be a n-dimensional compact Hermitian manifold.
Let G ∈ C∞(X) be the (Gauduchon) function such that eGωn−1 is ddc-closed. Let
0 ≤ g ∈ Lp(ω), p > 1, be such that

∫

X
gωn > 0. Let us denote

α0 =

∫

X

eGωn, A =

∫

X

g
1

n eGωn > 0.

Consider cg > 0 and u ∈ PSH(ω) ∩C(X) solving

(2.4) (ω + ddcu)n = cg gω
n

(see [KN13, Theorem 0.1] and (1.3) in Section 1). Suppose that v ∈ PSH(ω) ∩
L∞(X) satisfies

(ω + ddcv)n = evgωn.

Then,

log cg ≤ sup
X

v ≤ C(‖g‖p, A,X, ω) + n log
α0

A
,

where

C(‖g‖p, A,X, ω) =

∫

X

|v − sup
X

v|
g

1

n eGωn

A
.

Proof. PutM = supX v and v0 = v−M . By the mixed type inequality (Lemma 1.9)

ωv ∧ ω
n−1 ≥ e

v
n g

1

nωn.

Therefore,

ωv ∧ e
Gωn−1 ≥ e

v
n g

1

n eGωn.

By the Gauduchon condition it follows that

(2.5)

∫

X

eGωn ≥

∫

X

e
v
n g

1

n eGωn.
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The Jensen inequality gives that

(2.6) log

(

1

A

∫

X

e
v
n g

1

n eGωn
)

≥

∫

X

v

n

g
1

n eGωn

A
.

Combining (2.5) and (2.6) and v = v0 +M we get

n log
α0

A
≥M +

∫

X

v0
g

1

n eGωn

A
.

Hence, we get the second inequality of Proposition 2.5. It remains to prove the first
one. According to (2.4) and v = v0 +M we get that

ωnv = ev0+Mgωn ≤ eMgωn =
eM

cg
ωnu .

Therefore, the first inequality follows from Corollary 2.4. �

We are in the position to prove existence of continuous solution to Monge-Ampère
equation with the right hand side in Lp, p > 1.

Proof of Theorem 2.1. Suppose that the sequence of smooth functions fj > 0,
j ≥ 1, converges in Lp(ωn) to f as j → +∞. By a theorem of Cherrier [Ch87,
Théorèm 1, p.373], there exists a unique ϕj ∈ PSH(ω) ∩ C∞(X) such that

(ω + ddcϕj)
n = eϕjfjω

n.

Let us denote

Mj = sup
X

ϕj , and ψj = ϕj −Mj ≤ 0.

Then, the above equation can be rewritten as follows.

(2.7) (ω + ddcψj)
n = eψj+Mjfjω

n.

Claim 2.6. Mj is uniformly bounded.

Proof of Claim 2.6. It’s a consequence of Proposition 2.5 and Corollary 1.3. Let us
define

Aj =

∫

X

f
1

n

j e
Gωn, α0 =

∫

X

eGωn.

Applying the second inequality in Proposition 2.5 one gets that

(2.8) Mj ≤ C(‖fj‖p, Aj , X, ω) + n log
α0

Aj

Thus, it is sufficient to show that

1

C
< Aj < C

for some uniform constant C > 0 independent of j ≥ 1. Indeed, it is clear that

Aj →

∫

X

f
1

n eGωn > 0

as j → +∞. Hence, Aj is uniformly bounded from below away from 0. Next, by
the Hölder inequality we get that

∫

X

f
1

n

j e
Gωn ≤

(∫

X

fje
Gωn

)
1

n
(∫

X

eGωn
)

n−1

n

.
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Therefore, for j large,

1

2

∫

X

f
1

n eGωn ≤ Aj ≤ α
n−1

n

(∫

X

fje
Gωn

)
1

n

.

We have obtained the upper bound part. It remains to show Mj is uniformly
bounded from below. We solve uj ∈ PSH(ω) ∩ C(X)

(ω + ddcuj)
n = cjfjω

n,

where cj > c0 := c0(‖fj‖p, X, ω) > 0 (see (1.3) in Corollary 1.3). The first inequal-
ity in Proposition 2.5 gives

log c0 ≤ log cj ≤Mj.

The claim is proven. �

Claim 2.6 implies that the right hand side of (2.7) is uniformly bounded in
Lp(ωn). Since the family {ψj} is compact in L1(ωn), after passing to a subsequence,
we may assume that it is a Cauchy sequence in L1(ωn), and suppose that eMj

converges to eM . [KN13, Corollary 5.10] shows that it is actually a Cauchy sequence
in C(X). Thus, ψj converges uniformly to ψ ∈ PSH(ω)∩C(X), supX ψ = 0. Hence
ϕ = ψ +M solves

(2.9) (ω + ddcϕ)n = eϕfωn.

Thus, we have finished the proof of existence. �

For λ = 0 a smooth (or continuous) solution exists after multiplication of the
right hand side by a suitable constant [TW10b, Corollary 1], [KN13, Theorem 0.1].
When λ > 0 the difference is that the adjustive constant c > 0 does not appear
on the right hand side. Our next result shows how this constant can be computed
using Theorem 2.1.

Corollary 2.7. Let 0 ≤ f ∈ Lp(ωn), p > 1 be such that
∫

X
fωn > 0. Let c > 0

and ϕ ∈ PSH(ω) ∩C(X) solve

(2.10) (ω + ddcϕ)n = cfωn.

Let ϕε ∈ PSH(ω) ∩ C(X), 0 < ε ≤ 1, be the unique solution to

(2.11) (ω + ddcϕε)
n = eεϕεfωn.

Then, for any fixed x ∈ X,

c = lim
ε→0

eεϕε(x) = lim
ε→0

eεMε

where Mε = supX ϕε.

Remark 2.8. In the case ω is Kähler, under the necessary condition for the solution
of the equation (2.10)

∫

X

fωn =

∫

X

ωn,

we are able to show that

0 ≤Mε ≤ C.

Therefore, c = limε→0 e
εMε = 1.
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Proof of Corollary 2.7. Put Mε = supX ϕε and ψε = ϕε−Mε. The equation (2.11)
is now rewritten as

(2.12) (ω + ddcψε)
n = eǫψε+εMεfωn.

Again by Proposition 2.5 we get

εMε ≤ εC + n log
α0

A
< C′,

where α0 =
∫

X
eGωn, A =

∫

X
f

1

n eGωn > 0 and 0 < ε ≤ 1. Then, it follows from
(2.12) that

ωnψε
≤ eεMεfωn ≤ eC

′

fωn.

By [KN13, Corollary 5.6] there exists a uniform constant H = H(‖f‖Lp(ωn), ω) > 0
such that

(2.13) −H ≤ ψε = ϕε −Mε ≤ 0.

Note that, by Corollary 2.4, we also have

(2.14) eεMε ≥ c.

The right hand side of (2.12) is uniformly bounded in Lp(ωn), and we may suppose
that {ψε} is a Cauchy sequence in L1(ωn). [KN13, Corollary 5.10] implies that it
is actually a Cauchy sequence in C(X). Let us denote by ψ the limit point, and
suppose that εMε →M . Taking limits of two sides we get that

(2.15) (ω + ddcψ)n = eMfωn.

It follows from Corollary 2.4 and equations (2.10), (2.15) that

c = eM = lim
ε→0

eεMε .

Moreover, this equality and (2.13) imply, for any fixed x ∈ X ,

lim
ε→0

eεϕε(x) = c.

Thus, the proposition follows. �

3. Degenerate complex Monge-Ampère equations

Let (X,ω) be a n-dimensional compact Hermitian manifold. Suppose that there
is a smooth closed semi-positive (1, 1)-form β on X satisfying

(3.1)

∫

X

βn > 0, normalized by

∫

X

βn = 1.

Our goal is to extend the results in [EGZ09, EGZ11] to compact Hermitian man-
ifolds which a priori do not belong to the Fujiki class. On the other hand, if the
conjecture of Demailly and Paun [DP04, Conjecture 0.8] holds, then our results are
just the consequence of those in [EGZ09, EGZ11]. We refer the reader to the survey
[PSS12] for the state-of-the-art of results on the complex Monge-Ampère equations
on Kähler manifolds, in which many geometric problems and motivations to study
the weak solutions are discussed.

We are interested in finding weak solutions to the following equations

(β + ddcϕ)n = eλϕfωn, λ ≥ 0
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where 0 ≤ f ∈ Lp(ωn), p > 1 and the function ϕ belongs to

PSH(β) := {u ∈ L1(X,R ∪ −∞) : β + ddcu ≥ 0 and u is u.s.c}.

If a function belongs to PSH(β) then we call it a β-psh function. We refer to
[GZ05, GZ07, EGZ09, EGZ11] for properties of β-psh functions.

Our first result in this section deals with the case λ = 1 or equivalently λ > 0
(up to a rescaling).

Theorem 3.1. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫

X
fωn > 0 Then, there

exists a unique function ϕ ∈ PSH(β) ∩C(X) satisfying

(β + ddcϕ)n = eϕfωn

in the weak sense of currents.

Then, using this theorem we get the following result which includes Corollary 0.4.

Theorem 3.2. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫

X
fωn > 0. Let us denote

by ϕε ∈ PSH(β)∩C(X), 0 < ε ≤ 1, the unique continuous solution to the equation

(3.2) (β + ddcϕε)
n = eεϕεfωn.

Then, for any fixed x ∈ X,

(3.3) eεϕε(x) → c :=

∫

X
βn

∫

X
fωn

as ε→ 0.

Moreover, as ε → 0, ϕε − supX ϕε converges uniformly to the unique continuous
ϕ ∈ PSH(β), supX ϕ = 0, satisfying the equation

(β + ddcϕ)n = c fωn

in the weak sense of currents.

Remark 3.3. The uniqueness in Theorems 3.1 and 3.2 (continuous or bounded
solutions) is well-known. In fact, once we have the volume-capacity inequality
(Proposition 1.8) it can be obtained by adapting the stability estimate of Ko lodziej
[Ko l03, Ko l05] to this setting as it was done by Dinew and Zhang [DiZh10, Corol-
lary 1.2]. One special feature of those equations is that we do have the classical
comparison principle for β-psh functions and the invariance of volume of their
Monge-Ampère measures, i.e.

∫

X
βnu =

∫

X
βn for all u ∈ PSH(β) ∩ L∞(X).

Remark 3.4. If X possesses a Kähler metric or it is in the Fujiki class, then two
theorems above are due to Eyssidieux-Guedj-Zeriahi [EGZ09, EGZ11] who have
generalised Ko lodziej’s results [Ko l98, Ko l03] to the degenerate left hand side. In
the course of the proof of the theorems we follow the approach outlined in [EGZ09,
EGZ11]. The main difference is that while on Kähler manifolds one can choose a
sequence of Kähler metrics which tend to the degenerate metric β, it is no longer
the case on compact Hermitian manifolds. We have to approximate the degenerate
metric β ≥ 0 by a sequence of Hermitian metrics, such as {β+ εω}ε>0. In this case
we have to deal with the torsion of ω. The new tools are the recent results [KN13]
which will help us carrying out the arguments. We shall see that the modified
comparison principle [KN13, Theorem 0.2] appears at almost every step.

First we will prove Theorem 3.2 assuming Theorem 3.1. The proof will make
use of the stability estimate of L∞ − Lr, r ≥ 1, of solutions [Ko l03, Theorem 4.5],
[EGZ09, Proposition 3.3] provided the right hand sides are in Lp(ωn), p > 1.
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Proof of Theorem 3.2. Let us denote Mε := supX ϕε and ψε := ϕε − Mε. The
equation (3.2) is then rewritten as

(3.4) (β + ddcψε)
n = eεψε+εMεfωn.

Put Ã :=
∫

X
fωn > 0, and recall that we have normalised

∫

X
βn = 1. Therefore,

by the Stokes theorem

1 =

∫

X

(β + ddcψε)
n =

∫

X

eεψε+εMεfωn.

An application of the Jensen inequality gives

(3.5) log
1

Ã
≥

∫

X

(εψε + εMε)
fωn

Ã
= εMε +

∫

X

εψε
fωn

Ã
.

As β ≤ Cω for some C > 0 and supX ψε = 0, it follows from Corollary 1.3 that

there exists C = C(Ã, ‖f‖p, X, ω) > 0 such that
∫

X

ψε
fωn

Ã
≥ −C.

Therefore, the inequality (3.5) implies that

εMε ≤ εC + log
1

Ã
≤ C′

as 0 < ε ≤ 1. This inequality tells us that

(β + ddcψε)
n ≤ eC

′

fωn.

By the volume-capacity inequality (Proposition 1.8) and [EGZ09, Theorem 2.1],
after a simple application of Hölder inequality, we get that

(3.6) −H ≤ ψε ≤ 0

where H depends only on X,ω, β, ‖f‖p. Therefore, the right hand side of the
equation (3.4) is uniformly bounded in Lp, p > 1. It follows the proof of [EGZ09,
Proposition 3.3] or [EGZ11, Corollary 3.4] that

(3.7) ‖ψε − ψδ‖∞ ≤ C‖ψε − ψδ‖
γ
1

where 0 < γ < γmax = γmax(n, p) (explicit formula is given in [EGZ09, EGZ11]).
Since {ψε}0<ε≤1 is compact in L1(ωn), there exists a subsequence {ψεj}, εj ց 0

as j → +∞, which is Cauchy in L1(ωn). By (3.7) this is also a Cauchy sequence
in C(X). Therefore, it converges to ψ ∈ PSH(β) ∩ C(X) with supX ψ = 0. We
may suppose that εjMj converges to M as j → +∞. Thus, by the Bedford-Taylor
convergence theorem we have

(β + ddcψ)n = eMfωn

as εjψεj (x) → 0 for every x ∈ X (see (3.6)). It is obvious that

eM =

∫

X
βn

∫

X
fωn

:= c is uniquely defined.

Furthermore, there is at most one ϕ ∈ PSH(β) ∩ C(X) with supX ϕ = 0 solving
the equation

(β + ddcϕ)n = cfωn.

It implies that actually eεϕε(x) → c, and ψε converges uniformly to ψ ≡ ϕ as
ε→ 0. �
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The hard part is to prove the existence of solution in Theorem 3.1. We follow
the ideas in [EGZ09, EGZ11]. At the first step we show that the equation admits a
solution in the finite self energy class, i.e. the class E1(X, β) (see below for the defi-
nition). Once the first step is done then the second step is showing that this solution
is bounded. It follows from the works of Ko lodziej [Ko l98, Ko l05] and Eyssidieux-
Guedj-Zeriahi [EGZ09]. The last step is to show the solution is continuous. It is an
immediate consequence of the viscosity approach due to Eyssidieux-Guedj-Zeriahi
[EGZ11]. Since the second and last step are well-known, we will not reproduce
them here. We refer the reader to [Ko l05, EGZ09, EGZ11] for the details. Thus,
we only focus on the proof of the first step.

Following [GZ07, EGZ09] we say that a β-psh function u belongs to E1(X, β) if
there exists a sequence uj ∈ PSH(β) ∩ L∞(X) satisfying

uj ց u and sup
j

∫

X

|uj|(β + ddcuj)
n < +∞.

We are in a position to state our main result in this section.

Theorem 3.5. Let β be a smooth closed semi-positive (1, 1)-form such that
∫

X
βn =

1. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫

X
fωn > 0. Then, there exists a function

ϕ ∈ E1(X, β) satisfying

(β + ddcϕ)n = eϕfωn

in the weak sense of currents.

The outline of the proof is as follows. We approximate the degenerate form β
by a family of Hermitian metrics β + εω, 0 < ε ≤ 1. For each 0 < ε ≤ 1, by
Theorem 2.1, there is a unique ϕε ∈ PSH(β + εω) ∩ C(X) such that

(3.8) (β + εω + ddcϕε)
n = eϕεfωn.

Our goal is to show {ϕε} decreases to a solution ϕ ∈ E1(X, β).
The next result shows why the sequence {ϕε} is decreasing as εց 0.

Lemma 3.6. Let ω, ω̃ be two Hermitian metrics on X such that ω̃ ≤ ω. Let
µ be a positive Radon measure. Suppose that u ∈ PSH(ω) ∩ L∞(X) and v ∈
PSH(ω̃) ∩ L∞(X) satisfy

(3.9) (ω + ddcu)n = euµ, (ω̃ + ddcv)n = evµ.

Then, v ≤ u.

The proof is similar to the one of Lemma 2.3. The difference now is the vari-
ation of metrics on the left hand side. We include its proof here for the sake of
completeness.

Proof. We argue by contradiction. Assume that {v > u} is nonempty. Then,
m = infX(u − v) < 0. Fix an 0 < ε << 1 to be determined later, and we denote
m(ε) = infX [u− (1 − ε)v]. It is clear that

m− ε‖v‖∞ ≤ m(ε) ≤ m+ ε‖v‖∞.

Let us denote

Uε(s) = {u < (1 − ε)v +m(ε) + s}.
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Note that v ∈ PSH(ω) as ω̃ ≤ ω. Applying the modified comparison principle

from [KN13] we get that, for 0 < s < ε0 := ε3

16B ,

(3.10)

∫

Uε(s)

(ω + ddc(1 − ε)v)n ≤ [1 +
Cs

εn
]

∫

Uε(s)

(ω + ddcu)n.

Since on {u < (1 − ε)v +m(ε) + s}

(ω + ddc(1 − ε)v)n ≥ (1 − ε)nevµ ≥ (1 − ε)neu−m−2ε‖v‖∞−sµ,

it follows that

(1 − ε)ne−m−2ε‖v‖∞−s

∫

Uε(s)

euµ ≤ [1 +
Cs

εn
]

∫

U(s)

euµ.

Note that by (3.10) for every 0 < s < ε0
∫

Uε(s)

euµ =

∫

Uε(s)

(ω + ddcu)n > 0.

Since m < 0, we may choose 0 < ε so small that

(1 − ε)ne−
m
2
−2ε‖v‖∞ > 1 + b

for some 0 < b = b(m, ε). Thus, we get for every 0 < s < min{ε0,−
m
2 } that

0 < b ≤
Cs

εn
.

It is impossible when s > 0 is small enough. Thus, the proof follows. �

We are ready to prove our theorem.

Proof of Theorem 3.5. Take {ϕε} to be the solutions from (3.8). We are going to
show that

(3.11) ϕε ց ϕ ∈ PSH(β) as εց 0

and

(3.12) sup
0<ε≤1

∫

X

|ϕε|(β + εω + ddcϕε)
n < +∞.

Let us start with the first property (3.11). Applying Lemma 3.6 to β + εω and
β + ε′ω, 0 < ε < ε′, we get that the sequence ϕε is decreasing as εց 0. Hence, we
can put

ϕ := lim
ε→0

ϕε.

To verify that ϕ ∈ PSH(β), it is enough to show that the sequence ϕε does not
decrease identically to −∞. More precisely, we will prove that

(3.13)

∫

X

eϕεfωn ≥
1

2

∫

X

βn > 0

for ε > 0 small enough. In fact, set Mε = supX ϕε, and ψε = ϕε −Mε. Then, the
equation (3.8) reads

(3.14) (β + εω + ddcψε)
n = eψε+Mεfωn.

The following estimate is the most crucial step where the results of [KN13] play
an important role.
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Lemma 3.7. For 0 < ε ≤ 1

‖ψε‖∞ ≤ C

(

log
1

ε

)n

where C > 0 is a uniform constant. In particular, for each positive integer k,

lim
ε→0

ε‖ψε‖
k
∞ = 0.

Proof of Lemma 3.7. In order to use the a priori estimate in [KN13] one needs to
know that (β + εω + ddcψε)

n is well dominated by the capacity capβ+εω.

Claim 3.8. Mε is uniformly bounded from above.

Proof of Claim 3.8. It follows from Proposition 2.5 with an observation that the
reference metric β+εω, 0 < ε ≤ 1, is dominated by Cω for some C > 0. Therefore,

0 < α0(ε) :=

∫

X

(β + εω) ∧ eGωn−1 < Cα0,

a uniform constant. Another constant is

A :=

∫

X

f
1

n eGωn > 0 as

∫

X

fωn > 0.

Since 0 < β + εω ≤ Cω, we have ψε ∈ PSH(Cω). As supX ψε = 0, it follows from
Corollary 1.3 that

(3.15)

∫

X

|ψε|f
1

n eGωn ≤

∫

X

|ψε|f
1

n eG[Cω]n < C′

with a uniform constant C′ > 0. Proposition 2.5 and (3.15) give that

(3.16) Mε ≤ C′ + n log
α0(ε)

A
< C′ + n log

Cα0

A
.

The claim follows. �

We proceed to finish the proof of Lemma 3.7. By Claim 3.8 and the equation
(3.14) we get that, for a uniform constant C > 0,

(3.17) (β + εω + ddcψε)
n = eψε+Mεfωn ≤ eCfωn.

Here, by the volume-capacity inequality (Proposition 1.8) and by capβ(E) ≤ capβ+εω(E),
we get, after using the Hölder inequality, that for any Borel set E ⊂ X ,

(3.18)

∫

E

fωn ≤ C‖f‖p exp



−
a

cap
1

n

β (E)



 ≤ C′ exp



−
a

cap
1

n

β+εω(E)





where a = a(X,ω, β, p) > 0 and C′ > 0 depends only on X,ω, ‖f‖p. Let us use the
notation

βε := β + εω and N(βε) := sup

{∫

X

|ρ|βnε : ρ ∈ PSH(βε) and sup
X

ρ = 0

}

.

It follows from (3.17) and (3.18) that

(3.19) (βε + ddcψε)
n ≤ C′ exp



−
a

cap
1

n

βε
(E)



 .
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Since β is closed and β ≥ 0, the reference Hermitian metric βε satisfies

(3.20)
−
B

ε
(βε)

2 ≤ 2n ddcβε ≤
B

ε
(βε)

2,

−
B

ε
(βε)

3 ≤ 4n2 dβε ∧ d
cβε ≤

B

ε
(βε)

3.

Thus, the ”curvature” constant for βε is Bε = B
ε

.
We wish to apply the a priori estimate from the proof of [KN13, Corollary 5.6]

to the Hermitian metric βε. Because of Bε = B
ε

the crucial change is the range of
the considered sublevel sets which are close to the minimum of ψε. The value s > 0
there now can be taken

0 < s ≤
1

3
min

{

1

2n
,

1

23
1

16Bε

}

=
ε

384B

for ε > 0 small enough.
By (3.19) the Monge-Ampère measure (βε+ddcψε)

n satisfies the inequality (5.2)
in [KN13] for the admissible function

h(s) = Ceas for a, C > 0 independent of ε.

Therefore, the formula in the proof of [KN13, Corollary 5.6] gives

(3.21) ‖ψε‖∞ ≤ s0 +
CN(βε)

~(s0)
,

where we choose

(3.22) s0 =
ε

384B
≥ ε2

(for sufficiently small ε > 0) and ~(s) is the inverse function of

κ
(

s−n
)

4Cn

{

1

[h(s)]
1

n

+

∫ ∞

s

dx

x [h(x)]
1

n

}

.

The next step is to estimate the right hand side of (3.21) from above. By compu-
tation we get that

κ(x) ≤ C exp(−ãx−
1

n )

where C, ã > 0 are uniform constants. As κ is an increasing function, its inverse
function satisfies

(3.23) ~(x) ≥

(

1

ã
log

C

x

)−n

.

Since supX ρ = 0 and ρ ∈ PSH(Cω), Corollary 1.3 gives
∫

X

|ρ|(β + εω)n ≤

∫

X

|ρ|[Cω]n < C′.

Therefore,

(3.24) N(βε) < C.

Plugging s0 = ε2 into the right hand side of (3.21), then using (3.23) and (3.24),
we get that

‖ψε‖L∞ ≤ ε2 + C

(

1

ã
logC −

2 log ε

ã

)n

≤
C

ãn
(− log ε)n

for ε > 0 small. Thus, Lemma 3.7 follows. �
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We are in the position to prove (3.13). Put Ω = β + εω, then it’s easy to see
that

ddcΩ = εddcω, dΩ ∧ dcΩ = ε2dω ∧ dcω.

Hence, one can take BΩ = εB to be the corresponding constant in Proposition 1.5
for the metric Ω, i.e.

(3.25) − εBω2 ≤ 2nddcΩ ≤ εBω2, −εBω3 ≤ 4n2dΩ ∧ dcΩ ≤ εBω3.

Therefore,

(3.26)

∫

X

(β + εω)n − εB‖ψε‖
n
L∞C ≤

∫

X

(β + εω + ddcψε)
n

≤

∫

X

(β + εω)n + εB‖ψε‖
n
L∞C.

Combining Lemma 3.7 and (3.26) we get the property (3.13).
Next, we shall see how to get (3.12), i.e.

(3.27) sup
0<ε≤1

∫

X

|ϕε|(β + εω + ddcϕε)
n < +∞.

Claim 3.9. Mε is uniformly bounded from below.

Proof of Claim 3.9. We use again the equation (3.14). It gives us

(β + εω + ddcψε)
n = eψε+Mεfωn ≤ eMεfωn.

Integrating two sides
∫

X

(β + εω + ddcψε)
n ≤ eMε

∫

X

fωn.

Combining this, the first inequality of (3.26) and Lemma 3.7, we get

eMε

∫

X

fωn ≥

∫

X

(β + εω)n − ε(− log ε)n
2

C ≥
1

2

∫

X

βn > 0

for ε sufficiently small. Thus, the claim easily follows. �

We proceed to prove (3.27). By Claims 3.8 and 3.9 there exists a uniform number
M ≥ 1 such that

−M ≤Mε ≤M.

Since ϕε = ψε +Mε, we have
∫

X

|ϕε|(β + εω + ddcϕε)
n =

∫

X

|ψε +Mε|e
ψε+Mεfωn

≤

∫

X

(−ψε)e
ψε+Mfωn +

∫

X

MeMfωn.

As maxs≤0(−ses) = 1/e, we get (3.27). Thus, the second property of the sequence
ϕε is obtained.

We are in a position to show that ϕ ∈ E1(X, β). In other words,
∫

X

|ϕ|(β + ddcϕ)n < +∞

in the sense that there exists a sequence ϕj ↓ ϕ, ϕj ∈ PSH(β)∩L∞(X), satisfying

(3.28) sup
j

∫

X

|ϕj |(β + ddcϕj)
n < +∞.
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By Claims 3.8 and 3.9 we may assume, without lost of generality, that

ϕε ≤ −1

for every 0 < ε ≤ 1. The same is true for ϕ. The construction of the sequence ϕj
is as follows. Let us denote for j ≥ 1,

ϕj = max{ϕ,−j}.

As β ≥ 0, ϕj ∈ PSH(β) for j ≥ 1. It’s obvious that ϕj ց ϕ. We shall check (3.28).
Let us denote

ϕε,j = max{ϕε,−j}.

Observe that, if j is fixed, then ϕε,j is uniformly bounded and it decreases to
ϕj ∈ PSH(β) ∩ L∞(X) as ε ց 0. Hence, by the Bedford-Taylor convergence
theorem [BT82] we have

(β + εω + ddcϕε,j)
n → (β + ddcϕj)

n weakly as ε→ 0.

We will verify that for a fixed j,

(3.29)

∫

X

(−ϕε,j)(β + εω + ddcϕǫ,j)
n < C,

where C > 0 is a uniform constant independent of j, ε. It follows from (3.25) that
BΩ = εB is the constant in (1.5) for the metric Ω = β+ εω. Hence, Proposition 1.6
applied to u = ϕε ≤ v = ϕε,j ≤ −1 implies that

∫

X

(−ϕε,j)(β + εω + ddcϕε,j)
n ≤ 2n

∫

X

(−ϕε)(β + εω + ddcϕε)
n+

+ εB(− log ε)4n
2

C,

where the last term on the right hand side comes from Lemma 3.7:

|ϕε,j | ≤ |ϕε| ≤ |ψε| +M ≤ C(− log ε)n.

Therefore, for 0 < ε ≤ 1,
∫

X

(−ϕε,j)(β + εω + ddcϕε,j)
n ≤ 2n

∫

X

(−ϕε)(β + εω + ddcϕε)
n + C.

By (3.27) the right hand side is under control. Therefore, we get (3.29).
We are ready to justify (3.28), it is a classical argument. Since ϕε,j is u.s.c, any

limit point ν of {−ϕε,j(β + εω + ddcϕε,j)
n}ε>0 as εց 0 satisfies

0 ≤ (−ϕj)(β + ddcϕj)
n ≤ ν.

It follows that

0 ≤

∫

X

(−ϕj)(β + ddcϕj)
n ≤ lim inf

ε→0

∫

X

(−ϕε,j)(βε + ddcϕε,j)
n < C < +∞

where the last inequality is by (3.29). Thus, we proved (3.28), i.e. ϕ ∈ E1(X, β).

End of the proof of Theorem 3.5. It remains to show that ϕ satisfies the Monge-
Ampère equation. Since M ≥ ϕε ց ϕ as ε ց 0, it follows from the Lebesgue
dominated convergence theorem that

eϕεfωn → eϕfωn.

By (3.8) we will finish if we can show

(3.30) (β + εω + ddcϕε)
n → (β + ddcϕ)n as ε→ 0.
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Indeed, this follows from the fact that (β+εω+ddcϕε,j)
n → (β+ddcϕj)

n as ε→ 0
for any fixed j, and

∫

{ϕε≤−j}

(β + εω + ddcϕε)
n ≤

1

j

∫

X

|ϕε|(β + εω + ddcϕε)
n ≤

C

j
,

where C > 0 is independent of ε and j (see (3.27)). The proof of the theorem is
completed. �

Thus, we also proved Theorem 3.1 by using the outline above and Theorem 3.5.

As in the Kähler setting, from Theorems 3.1, 2.1 and Lemma 3.6 we get the
following result.

Corollary 3.10. Let 0 ≤ f ∈ Lp(ωn), p > 1, be such that
∫

X
fωn > 0. Let

ϕ ∈ PSH(β) ∩ C(X) be the unique solution to

(β + ddcϕ)n = eϕfωn.

For 0 < ε ≤ 1 let ϕε ∈ PSH(β + εω) ∩ C(X) be the unique solution to

(β + εω + ddcϕε)
n = eϕεfωn.

Then, ϕε ց ϕ uniformly as εց 0.

4. Applications

In this section we consider applications of results in Sections 2 and 3 to several
problems on compact Hermitian manifolds. Recall that we use the normalization

dc =
i

2π
(∂̄ − ∂), ddc =

i

π
∂∂̄.

We consider the real Bott-Chern cohomology group

H1,1
BC(X,R) =

{closed real (1, 1)-forms}

{ddcφ, φ ∈ C∞(X,R)}

Let {β} denote the class of β in H1,1
BC(X,R). The class {β} is called nef if for any

ε > 0 there exists a representative β + ddcψ such that

β + ddcψ > −εω,

where ω is some fixed Hermitian metric on X .
If β ≥ 0, then {β} is a nef class. If moreover it has positive highest self-

intersection number
∫

X
βn > 0, then these assumptions allow us to solve the de-

generated Monge-Ampère equation with the background form being β. This gives
a way to construct non-trivial β-psh functions on X . We will get some interesting
consequences of this fact.
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4.1. The Tosatti-Weinkove and Demailly-Paun conjectures. We shall start
with a verification of a conjecture of Tosatti and Weinkove [TW12a] under the
assumption that β ≥ 0. Let us state the result.

Theorem 4.1. Let X be a n-dimensional compact complex manifold. Suppose there
exists a class {β} ∈ H1,1

BC(X,R) which is semi-positive and satisfies
∫

X
βn > 0. Let

x1, ..., xN ∈ X be fixed points and let τ1, ..., τN be positive real numbers so that

(4.1)

N
∑

j=1

τnj <

∫

X

βn.

Then there exists a β-plurisubharmonic function ϕ with logarithmic poles at x1, ..., xN :

ϕ(z) ≤ τj log |z| +O(1),

in a coordinate neighbourhood (z1, ..., zn) centered at xj, where |z|2 = |z1|
2 + ... +

|zn|
2.

Remark 4.2. The conjecture in [TW12a] is stated for β being nef and
∫

X
βn > 0,

which is motivated by the corresponding result of Demailly on Kähler manifolds.
We refer the reader to [De93] for applications in algebraic geometry. Tosatti and
Weinkove proved their conjecture for n = 2, 3 and obtained some partial results for
general n (if X is Moishezon and {β} is a rational class).

Proof of Theorem 4.1. Given Theorem 3.2, Demailly’s mass concentration tech-
nique in [De93, Sec. 6] is adaptable immediately (see also [TW12a]). For the
sake of completeness we repeat it here. We choose coordinates (z1, ..., zn) in a
neighbourhood centered at xj . Let χ : R → R be a smooth, convex, increasing,
which satisfies χ(t) = t for t ≥ 0, and χ(t) = − 1

2 for t ≤ −1. Put, for ε > 0,

γj,ε = ddc
(

χ

(

log
|z|

ε

))

,

where |z|2 = |z1|
2 + ...+ |zn|

2. As observed in [De93] γj,ε is a closed (1, 1)-positive
form on this coordinate chart, and it is equal to ddc log |z| outside the ball {|z| ≤ ε}.
Then, we may extend γnj,ε = 0 for |z| > ε. Thus, γnj,ε is a smooth non-negative
(n, n)-form on X satisfies

∫

X

γnj,ε = 1,

and γnj,ε → δxj
the Dirac measure mass at xj as ε→ 0. Put

δ =

∫

X

βn −

n
∑

j=1

τnj > 0.

Using Theorem 3.2 we solve the Monge-Ampère equation

(β + ddcϕε)
n

=

N
∑

j=1

τnj γ
n
j,ε + δ

ωn
∫

X
ωn

where ϕε ∈ PSH(β) ∩ C(X), supX ϕε = 0. The family {ϕε : supX ϕε = 0}ε>0 is
compact in L1(ωn). Then, there exists a subsequence ε→ 0 such that ϕε converges
to a ϕ ∈ PSH(β) in L1(ωn).
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We show now that the funciton ϕ has desired singularities. Let U be a neigh-
bourhood of xj and suppose that

β = ddch

for h ∈ C∞(U) on U . Set v := ψε = h + ϕε. Since h ∈ C∞(U), there exists a
uniform constant C such that v|∂U

≤ C. Consider

u = τj

(

χ(log
|z|

ε
) + log ε

)

+ C1,

where C1 is a large constant. Then for ε > 0 small enough

u|∂U
= τj log |z| + C1, v|∂U

≤ C,

(ddcv)n ≥ τnj γ
n
ε = (ddcu)n on U.

For C1 sufficiently large, u ≥ v on ∂U , then it follows from the Bedford-Taylor
comparison principle [BT82] that u ≥ v on U . Hence,

ψε ≤ τj log(|z| + ε) + C2 on U.

Thus, ϕ(z) ≤ log |z| +O(1) in U . �

We turn now to a weak version of a conjecture of Demailly and Paun [DP04,
Conjecture 0.8]. Suppose that a compact n-dimensional complex manifold possesses
a semi-positive cohomology class {β} of type (1, 1) such that

∫

X
βn > 0, then it is

conjectured that this manifold belongs to the Fujiki class C. We are able to prove
this for manifolds equipped with a pluriclosed metric. Let us state our result.

Theorem 4.3. Let (X,ω) be a n-dimensional compact complex manifold equipped
with the pluriclosed metric ω, i.e. ddcω = 0. Assume that X possesses a closed
semi-positive cohomology class {β} of type (1, 1) such that

∫

X
βn > 0. Then {β}

contains a Kähler current T , i.e. T ≥ δω for some δ > 0.

Remark 4.4. In the case of complex surfaces, i.e. n = 2, there always exits a
Gauduchon (pluriclosed) metric and the theorem is known thanks to the work of
N. Buchdahl [Bu99, Bu00] and A. Lamari [La99a, La99b]. When n = 3 as pointed
out by Chiose [Chi13, Remmark 3.3] that the semi-positive assumption of {β} in
Theorem 4.3 can be weaken to the nef one. Then, Theorem 4.3 is only interesting
for n ≥ 4.

Remark 4.5. By [DP04, Theorem 0.7] we know that a compact complex manifold
which carries a Kähler current is in the Fujiki class. Recently, Chiose [Chi14,
Theorem 0.2] shows that if X belongs to the Fujiki class and possesses a pluriclosed
metric, then X is indeed a Kähler manifold.

Our arguments follow the ideas of Chiose [Chi13] who used the non-degenerate
Monge-Ampère equation in [TW10b] to give a simpler proof of Demailly-Paun’s
theorem [DP04, Theorem 2.12]. Later on, Popovici [Po14, Lemma 3.1] made an
observation that can help to simplify some arguments in [Chi13]. We will also make
use of this observation.

Instead of using non degenerate Monge-Ampère equation as in [DP04] [Chi13]
we use the one with the degenerate left hand side (Section 3). We do not add a
small positive Hermitian metric to the degenerate metric β ≥ 0. The advantage is
that the total mass of the left hand side is invariant (=

∫

X
βn). However, a priori
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the obtained solutions are only continuous, so we need to extend [Po14, Lemma 3.2]
to the singular (1, 1)-forms setting. This also required results in previous sections.

First, we recall a useful lemma due to Lamari [La99a].

Lemma 4.6. Let α be a smooth real (1, 1) form. There exists a distribution ψ on
X such that α+ ddcψ ≥ 0 if and only if

∫

X

α ∧ γn−1 ≥ 0

for any Gauduchon metric γ, i.e. ddcγn−1 = 0, on X.

Proof of Theorem 4.3. We argue by contradiction. Suppose that {β} is not a
Kähler current. This means there is a sequence δj ↓ 0, j ≥ 1, and there is no
representative β + ddcu, u ∈ D(X) such that the real (1, 1) current β + ddcu− δjω
is positive. By Lemma 4.6 it implies that for every j ≥ 1 there exists a Gauduchon
metric gj such that

∫

X

(β − δjω) ∧ gn−1
j ≤ 0.

Put Gj := gn−1
j . Then, the inequality is equivalent to

(4.2)

∫

X

β ∧Gj ≤ δj

∫

X

ω ∧Gj .

Since β ≥ 0 and
∫

X
βn > 0, using Theorem 3.2 we solve, for j ≥ 1,

(4.3) (β + ddcvj)
n = cjω ∧Gj , vj ∈ PSH(β) ∩ C(X), sup

X

vj = 0.

Here, by the Stokes theorem,

(4.4) cj =

∫

X
(β + ddcvj)

n

∫

X
ω ∧Gj

=

∫

X
βn

∫

X
ω ∧Gj

> 0.

Put βj = β + ddcvj . It is easy to see that

(4.5)

∫

X

βj ∧Gj =

∫

X

β ∧Gj ≤ δj

∫

X

ω ∧Gj .

Next, we are going to prove that

(4.6)

∫

X

βj ∧Gj ·

∫

X

βn−1
j ∧ ω ≥

cj
n

(∫

X

ω ∧Gj

)2

.

We prove it by reducing to the case βj is smooth and positive definite (see [Po14,
Lemma 3.2]). Let us fix j for a moment as it does not affect our proof. We remark
that the reducing process uses in an essential way results in Sections 2 and 3.

Lemma 4.7. For 0 < ε ≤ 1, let vε ∈ PSH(β) ∩ C(X) be the unique solution to

(4.7) (β + ddcvε)
n = eεvεω ∧Gj

(by Theorem 3.1). Then,

(4.8)

∫

X

(β + ddcvε) ∧Gj ·

∫

X

(β + ddcvε)
n−1 ∧ ω ≥

1

n

(∫

X

e
εvε
2 ω ∧Gj

)2

.
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Proof of Lemma 4.7. Since 0 < ε ≤ 1 is fixed, by rescaling we work with β̃ := εβ,
ω̃ = εω, G̃j := εn−1Gj and ṽ := εvε instead of the original ones. Thus, without
lost of generality, we may assume ε = 1 and write u := vε. As j is fixed, to avoid
confusion of notations later, in the proof of this lemma we write

(4.9) g := gj and G := gn−1 = Gj .

Then, (β + ddcu)n = euω ∧G and we need to show that

(4.10)

∫

X

(β + ddcu) ∧G ·

∫

X

(β + ddcu)n−1 ∧ ω ≥
1

n

(∫

X

e
u
2 ω ∧G

)2

.

By a theorem of Cherrier [Ch87, Théorèm 1, p.373], for any s ≥ 1, we solve us ∈
PSH(β + 1

s
ω) ∩ C∞(X) satisfying

(4.11)

(

β +
1

s
ω + ddcus

)n

= eusω ∧G

with

τs := β +
1

s
ω + ddcus > 0.

We know from Corollary 3.10 that us ց u ∈ PSH(β) ∩ C(X) as s → +∞. Since
G is fixed, it follows from the Bedford-Taylor convergence theorem [BT82] that
τs ∧ G → (β + ddcu) ∧ G and τn−1

s ∧ ω → (β + ddcu)n−1 ∧ ω weakly as s → +∞.
That means

∫

X

(β + ddcu) ∧G ·

∫

X

(β + ddcu)n−1 ∧ ω = lim
s→+∞

∫

X

τs ∧G ·

∫

X

τn−1
s ∧ ω.

Claim 4.8.
∫

X
τs ∧G ·

∫

X
τn−1
s ∧ ω ≥ 1

n

(

∫

X

√

τn
s

ωn
ω∧G
ωn ωn

)2

.

Proof of Claim 4.8. Since the datum are smooth, we write

τs ∧G =
τs ∧G

ωn
ωn, τn−1

s ∧ ω =
τn−1
s ∧ ω

ωn
ωn.

It follows from the Cauchy-Schwarz inequality that

∫

X

τs ∧G ·

∫

X

τn−1
s ∧ ω ≥





∫

X

√

τs ∧G

ωn
·
τn−1
s ∧ ω

ωn
ωn





2

.

As G = gn−1 (see (4.9)), to get Claim 4.8 it’s enough to verify that

τs ∧ g
n−1

ωn
·
τn−1
s ∧ ω

ωn
≥

1

n

τns
ωn

·
ω ∧ gn−1

ωn
.

This inequality is equivalent to

τs ∧ g
n−1

gn
·
gn

ωn
·
τn−1
s ∧ ω

τns
·
τns
ωn

≥
1

n

τns
ωn

·
ω ∧ gn−1

ωn
.

Eliminating
τn
s

ωn on both sides and using the definition of trace, we reformulate it as

(4.12)
1

n2
(trgτs)(trτsω) ·

gn

ωn
≥

1

n

ω ∧ gn−1

ωn
.

By (4.13) below, we get that

1

n2
(trgτs)(trτsω) ·

gn

ωn
≥

1

n2
trgω ·

gn

ωn
=

1

n

ω ∧ gn−1

ωn
.
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Thus, (4.12) is proved. It is left to prove

(4.13) (trgτs)(trτsω) ≥ trgω.

This is a point-wise inequality. At O ∈ X , we choose a local coordinate such that

g(O) =
∑

dzl ∧ dz̄l, τs(O) =
∑

aldzl ∧ dz̄l, ω(O) =
∑

blmdzl ∧ dz̄m,

where al > 0 and the Hermitian matrix (blm) is positive definite. Therefore,

trgτs =
∑

al, trτsω =
∑ bll

al
, trgω =

∑

bll.

Hence, (4.13) follows by an elementary calculation. Claim 4.8 is proved. �

It follows from Claim 4.8 and (4.11) that

∫

X

τs ∧G ·

∫

X

τn−1
s ∧ ω ≥

1

n

(∫

X

e
us
2 ω ∧G

)2

.

Let s→ +∞, we get (4.10). We finished the proof of Lemma 4.7. �

We are ready for the verification of (4.6). By (3.3) in Theorem 3.2 for fixed j
and fixed x ∈ X we have

cj = lim
ε→0

eεvε(x)

where cj and vε are from (4.3) and (4.7), respectively. It also follows from Theo-
rem 3.2 that

vε − sup
X

vε → vj uniformly as εց 0.

Since the left hand side of (4.8) does not change if we replace vε by vε − supX vε,
letting ε→ 0 gives us

∫

X

βj ∧Gj ·

∫

X

βn−1
j ∧ ω ≥

cj
n

(∫

X

ω ∧Gj

)2

.

Combining this with (4.4) and (4.5) we get that

δj

∫

X

βn−1
j ∧ ω ≥

∫

X
βn

n
.

We use now our assumption on ω. Since ddcω = 0, the Stokes theorem gives
∫

X

ω ∧ βn−1
j =

∫

X

ω ∧ (β + ddcvj)
n−1 =

∫

X

ω ∧ βn−1 = C < +∞.

Therefore,

δjC ≥

∫

X
βn

n
for every δj ց 0.

It is not possible. Thus, the proof is complete. �
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4.2. The Chern-Ricci flow on smooth minimal models of general type.

The Chern-Ricci flow is the analogue of Kähler-Ricci flow on Hermitian manifolds.
Thanks to the works of Gill [Gil11, Gil13] and Tosatti-Weinkove [TW12b, TW12c,
TWYang13], among others, interesting results on the Chern-Ricci flow have been
proved. Those results are often inspired by corresponding results of the Kähler-Ricci
flow. The authors applied also the Chern-Ricci flow to investigate open problems
in Hermitian geometry [TW12c, TWYang13]. We refer the reader to those papers
and references therein for more details on the Chern-Ricci flow and its applications.

We are interested in recent preprint by Gill [Gil13] in which he obtained a gen-
eralisation of a result of Tsuji [Ts88] and Tian-Zhang [TiZha06]. We wish to use
the pluripotential technique to improve his result as it is done in [EGZ09]. Roughly
speaking we use the elliptic complex Monge-Ampère equation to improve the re-
sults obtained by the parabolic one. It seems to be known for the experts (see
Remark 4.14 below) but we feel it is worthwhile to write down it here for the
record and it is also a consequence of our results.

We first give a setup which is taken from [Gil13]. Let ω0 be a fixed Hermitian
metric on X . Then, the normalised Chern-Ricci has the form

(4.14)

{

∂
∂t
ω(t) = −Ric(ω(t)) − ω(t)

ω(0) = ω0,

where Ric(ω(t)) = −i∂∂̄ log[ω(t)]n.
We shall investigate the flow on a special class of Hermitian manifolds.

Definition 4.9. A Hermitian manifold is called smooth minimal model of general
type if cBC1 (KX) is nef and KX is a big line bundle.

On such a manifold there is a singular set which plays an important role in
studying the regularity of the flow (4.14). It is defined in [CoTo13].

Definition 4.10. The null locus of a smooth minimal model of general type is
defined to be

E :=
⋃

{

V ⊂ X : V is a subvariety, dimV = k,

∫

V

(

cBC1 (KX)
)k

= 0

}

.

Gill has obtained the following

Theorem 4.11 ([Gil13]). Let X be a smooth minimal model of general type and
E is its null locus. Then the normalized Chern-Ricci flow has smooth solution for
all time t ≥ 0 and

ω(t) → ωKE as t→ +∞

in the weak sense, where ωKE is a closed positive (1, 1)-current. Moreover, the
convergence is in C∞

loc(X \ E) and

Ric(ωKE) = −ωKE on X \ E.

E is the smallest set that we can take because of a result of Collins and Tosatti
[CoTo13]. It is a generalisation of [DP04, Theorem 0.5] to manifolds in the Fujiki
class.

Lemma 4.12 (Collins-Tosatti ’13). There exists ψ ∈ L1(X) such that

β + i∂∂̄ψ ≥ c0ω0
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for some c0 > 0. The function ψ ∈ C∞(X \E), where E is the null locus of X and
E = {ψ = −∞}.

On the projective manifold of general type, it is showed in [EGZ09] that the
solution constructed by the Kähler-Ricci flow [Ts88], [TiZha06], coincides with
the solution constructed by the elliptic Monge-Ampère equation. Therefore, the
potential of ωKE is continuous [EGZ09, EGZ11].

Thanks to our results in previous sections and the arguments in [EGZ09] we
are able to get the same statement for the Chern-Ricci flow on smooth minimal
models of general type. To state our result we need some notation. First, as X is
Moishezon, there exists a smooth closed semi-positive (1, 1)-form β such that

{β} = −cBC1 (X).

Moreover, we can pick a Hermitian metric Ω satisfying

β = i∂∂̄ log Ωn,

∫

X

Ωn =

∫

X

ωn0 .

As KX is big we have
∫

X

βn > 0.

Theorem 4.13. The closed positive (1, 1)-current ωKE in Theorem 4.11 has a
unique continuous potential, i.e. there is a unique continuous function ϕ such that

(β + ddcϕ)n = eϕΩn, with ωKE = β + ddcϕ ≥ 0,

in the weak sense on X and in C∞
loc(X \ E).

Remark 4.14. Under the assumptions of Theorem 4.11, X belongs to the Fujiki
class. Then, the results in [EGZ11] and [CoTo13] can be used to repeat all argu-
ments of [EGZ09]. Thus, we would get another proof of Theorem 4.13.

Having the above lemma the proof of Theorem 4.13 follows the lines of that of
[EGZ09, Proposition 4.3, 4.4].
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