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Abstract. A pure geometric description of the Kobayashi balls
of (C-)convex domains is given in terms of the so-called minimal
basis.

1. Introduction and results

Let D be a domain in Cn. Denote by cD and lD the Carathéodory
distance and the Lempert function of D, respectively:

cD(z, w) = sup{tanh−1 |f(w)| : f ∈ O(D,D), with f(z) = 0},

lD(z, w) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, ϕ(α) = w},
where D is the unit disc. The Kobayashi distance kD is the largest
pseudodistance not exceeding lD.

We are interested in a description of the Kobayashi balls near bound-
ary points of convex and, more generally, C-convex domains in terms
of parameters that reflect the geometry of the boundary. Such a de-
scription is

The first results in this direction can be found in [2, Theorems 1
and 5.1], where the strongly pseudoconvex case in Cn and the weakly
pseudoconvex finite type case in C2 are discussed with applications1 to
invariant forms of the Fatou type theorems (for the boundary values).
The weakly pseudoconvex finite type case in C2, as well as the convex
finite type case in Cn, are treated in [6, Propositions 8.8 and 8.9] as
byproducts of long considerations. The strongly pseudoconvex case in
Cn and the weakly pseudoconvex finite type in C2 are particular cases
of the pseudoconvex Levi corank one case which is considered in [3,
Theorem 1.3]. The behavior of the Kobayashi balls in all the mentioned
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results is given in terms of the Levi geometry of the boundary which
is assumed smooth and bounded.

Our aim is to describe the Kobayashi balls of (C-)convex domains
(not necessarily smooth and bounded) in terms of the so-called min-
imal basis (cf. [4, 9, 12]. The constants that appear depend only on
the radius of the balls and the dimension of the domains. The respec-
tive proof is short and pure geometric. The obtained result covers [6,
Propositions 8.8 and 8.9].

Assume that D contains no complex lines. Let q ∈ D and dD(q) =
dist(q, ∂D). Choose q1 ∈ ∂D so that τ1(q) := ‖q1 − q‖ = dD(q). Put
H1 = q+span(q1−q)⊥ and D1 = D∩H1. Let q2 ∈ ∂D1 so that τ2(q) :=
‖q2−q‖ = dD1(q). Put H2 = q+span(q1−q, q2−q)⊥, D2 = D∩H2 and

so on. Thus we get an orthonormal basis of the vectors ej =
qj − q
‖qj − q‖

,

1 ≤ j ≤ n, which is called minimal for D at q, and positive numbers
τ1(q) ≤ τ2(q) ≤ · · · ≤ τn(q) (the basis and the numbers are not uniquely
determined). After rotation we may assume that e1, e2, . . . , en is the
standard basis of Cn.

Recall now that a open set D in Cn is said to be (cf. [1]):
• C-convex if any non-empty intersection with a complex line is a

simply connected domain.
• linearly (weakly linearly convex) convex if for any p ∈ Cn \ D

(p ∈ ∂D) there exists a complex hyperplane through a which does not
intersect D.

Note that convexity ⇒ C-convexity ⇒ linear convexity ⇒ weak lin-
ear convexity (cf. [1, Theorem 2.3.9 ii)] for the second implication).
Moreover, in the case of C1-smooth bounded domains the last three
notions coincide (cf. [1, Corollary 2.5.6].

In view of this remark and the inequalities cD ≤ kD ≤ lD, we have the
following quantitative information about the Carathéodory/Kobayashi/
Lempert balls of (C-)convex domains.2

Theorem 1. Let D be a domain in Cn, containing no complex lines,
and q ∈ D. Assume that the standard basis of Cn is minimal for D at
q. Let r > 0.

(i) If D is weakly linearly convex, then

max
1≤j≤n

|zj − qj|
τj(q)

<
e2r − 1

n(e2r + 1)
⇒

n∑
j=1

|zj − qj|
τj(q)

<
e2r − 1

e2r + 1

⇒ z ∈ D and lD(q, z) < r.

2By the Lempert theorem, cD = kD = lD in the convex case, as well as in the
bounded C2-smooth C2-convex case (cf. [11]).
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(ii) If D is convex, then cD(q, z) < r implies max
1≤j≤n

|zj − qj|
τj(q)

< e2r−1.

(iii) If D is C-convex, then cD(q, z) < r implies max
1≤j≤n

|zj − qj|
τj(q)

<

e4r − 1.

So there exist constants c′ = c′(r, n) and c′′ = c′′(r) such that

D(q1, c
′τ1(q))× · · · × D(qn, c

′τn(q)) ⊂ kobD(q, r)

⊂ D(q1, c
′′τ1(q))× · · · × D(qn, c

′′τn(q)),

where kobD(q, r) is the Kobayashi ball {z ∈ D : k(q, z) < r} and
D(p, r) = {z ∈ C : |z − p| < r}. By [4, Lemma 3.10], the sizes of these
polydiscs are comparable (in terms of small/big constant depending on
D) with the sizes of polydiscs in [3, 6] arising from the Levi geometry
of the boundary. Thus Proposition 1 extends [6, Propositions 8.9].

Note also that if D is a proper C-convex domain in Cn containing
complex line, then it is biholomorphic to D′ × Cn−k, where D′ is a
bounded domain in Ck, 0 < k < n. (cf. Proposition 3 and the preceding
remark in [10]). So τk(q) < ∞ = τk+1(q) and it is easy to see that
Theorem 1 remains true.

To prove Theorem 1, we need the planar cases of following

Proposition 2. (i) Let D be proper convex domain in Cn. Then (cf.
[13, (2)])

cD(z, w) ≥ 1

2
log

dD(z)

dD(w)
.

Moreover, if n = 1, then

cD(z, w) ≥ 1

2
log

(
1 +
|z − w|
dD(w)

)
.

(ii) Let D be proper C-convex domain in Cn. Then

cD(z, w) ≥ 1

4
log

dD(z)

dD(w)
.

Moreover, if n = 1, then

cD(z, w) ≥ 1

4
log

(
1 +
|z − w|
dD(w)

)
.

The constants 1/2 and 1/4 are sharp as the examples D = D and
D = C∗\R+ show. Note that in the C-convex case the weaker estimate

cD(z, w) ≥ 1

4
log

dD(z)

4dD(w)
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is contained in [13, Proposition 2]
Theorem 1 has a local version.

Proposition 3. Let D be a domain in Cn whose boundary contains no
affine discs through a ∈ ∂D. Assume that the standard basis of Cn is
minimal for D at q ∈ D. Let r > r′ > 0.

(i) If D is weakly linearly convex near a, then

max
1≤j≤n

|zj − qj|
τj(q)

<
e2r − 1

n(e2r + 1)
⇒

n∑
j=1

|zj − qj|
τj(q)

<
e2r − 1

e2r + 1

⇒ z ∈ D and lD(q, z) < r.

for q sufficiently close to a.

(ii) If D is convex near a, then kD(q, z) < r′ implies max
1≤j≤n

|zj − qj|
τj(q)

<

e2r − 1 for q sufficiently close to a.
(iii) If D is C-convex near a and bounded, then lD(q, z) < r′ implies

max
1≤j≤n

|zj − qj|
τj(q)

< e4r − 1 for q sufficiently close to a.

By any of the above three notions of convexity near a we mean that
there exists a neighborhood U of a such that D∩U is an open set with
the respective global convexity.

Note that in the convex case, as well as in the C1-smooth C-convex
case, if ∂D contains no affine discs through a, then ∂D contains no
analytic discs through a (cf. [12, Propoisition 7]).

2. Proofs

Proof of Theorem 1. (i) Since D contains the discs D(q1, τ1(q)), . . . ,
D(qn, τn(q)) (lying in the respective coordinate complex planes), it con-
tains their convex hull

C = {ζ ∈ Cn : h(ζ) =
n∑
j=1

|ζj − qj|
τj(q)

< 1}

(cf. [12, Lemma 15]). Then

lD(q, z) ≤ lC(q, z) = tanh−1 h(z)

(cf. [5, Proposition 3.1.10]) which implies (i).

Before proving (ii) and (iii) note that by (C-)convexity and the
construction of the minimal basis there exists a complex hyperplane
qj+1 + Wj through qj+1 that is disjoint from D, j = 0, . . . , n− 1. It is
not difficult to see that Wj is given by the equation

αj,1ζ1 + · · ·+ αj,jζj + ζj+1 = 0.
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Let Λ : Cn → Cn be the linear mapping with matrix whose rows are
given by the vectors (αj,1, . . . , αj,j, 1, 0, . . . , 0). Set Λq(ζ) = q+Λ(ζ−q).
Note that G = Λq(D) is a (C-)convex domain. Denote by Gj the
projection of G onto j-th coordinate plane. Then G ⊂ G′ = G1 ×
· · · × Gn and the product formula for the Carathéodory distance (cf.
[5, Theorem 9.5]) implies that

(1) cD(q, z) ≥ cG′(q,Λq(z)) = max
1≤j≤n

cGj
(qj, zj).

Observe also that dGj
(qj) = τj(q).

(ii) If D is a convex domain, then Gj is a convex domain. Hence, by
Proposition 2 (i),

cGj
(qj, zj) ≥

1

2
log

(
1 +
|zj − qj|
τj(q)

)
and (ii) follows from here and (1).

(iii) If D is a C-convex domain, then Gj is a simple connected domain
(cf. [1, Theorem 2.3.6]). Hence, by Proposition 2 (ii),

cGj
(qj, zj) ≥

1

4
log

(
1 +
|zj − qj|
τj(q)

)
and (iii) follows from here and (1).

Proof of Proposition 2. After translation and rotation, we may assume
that 0 ∈ ∂D and w = (dD(w), 0, . . . , 0).

(i) We have that D ⊂ Π+ = {ζ ∈ Cn : Re ζ1 > 0} and hence

cD(z, w) ≥ cΠ+(z, w) = tanh−1

∣∣∣∣z1 − w1

z1 + w1

∣∣∣∣
≥ tanh−1 |z1 − w1|

|z1 − w1|+ 2dD(w)
=

1

2
log

(
1 +
|z1 − w1|
dD(w)

)
.

(ii) It follows by weak linear convexity that D∩{ζ1 ∈ Cn : ζ1 = 0} =
∅. Denote by D1 the projection of D onto the ζ1-plane. Let γG the
Carathéodory metric of a domain G in Ck :

γG(ζ;X) = sup{|f ′(ζ)X| : f ∈ O(G,D)}, ζ ∈ G, X ∈ Ck.

The Köbe 1/4 theorem implies that

γD1(ζ1; e1) ≥ 1

4dD1(ζ1)
≥ 1

4|ζ1|
.

Since D1 is a simply connected domain (cf. [1, Theorem 2.3.6]), then

cD(z, w) ≥ cD1(z1, w1) = inf
s

∫ 1

0

γD1(s(t); s
′(t)dt ≥ 1

4
inf
s

∫ 1

0

∣∣∣∣s′(t)s(t)

∣∣∣∣ dt,
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where the infimum is taken over all smooth curves s : [0, 1]→ D1 with
s(0) = z1 and s(1) = w1 (cf. [5]).

Set now

d(ζ1, η1) = log max(1 + |1− ζ1/η1|, 1 + |1− η1/ζ1|).

It is easy to check that d is a distance on C∗3 with “derivative”

lim
λ90

d(ζ1, ζ1 + λ)

|λ|
=

1

|ζ1|
.

Then (cf. [5, Lemma 4.3.3) (d)])

inf
s

∫ 1

0

∣∣∣∣s′(t)s(t)

∣∣∣∣ dt ≥ d(z1, w1)

and hence

cD(z, w) ≥ 1

4
d(z1, w1) ≥ 1

4
log

(
1 +
|z1 − w1|
dD(w)

)
.

Proof of Proposition 3. (i) Using Theorem 1(i), it is enough to show
that lim

q→a
τn(q) = 0. Assume the contrary. Then there exists a sequence

of points (qj)→ a such that (τn(qj))→ ε > 0 and (ej)→ e, where ej is
the last vector of the minimal basis for D at qj. We may find a bounded
neighborhood U of a such that D ∩U is a weakly linearly convex open
set. Shrinking ε (if necessary), it follows that the e-directional disc ∆
with center q and radius ε is a limit of affine discs in D ∩ U. Since
D ∩ U is a taut open set (cf. [11, Proposition 1.5]), then ∆ ⊂ ∂D, a
contradiction.

(ii) Having in mind Theorem 1 (ii), it is enough to show the following.

Claim 1. Let U be a neighborhood of a such that D ∩ U is convex.
There exist neighborhoods W ⊂ V ⊂ U of a such that if q ∈ D∩W and
kD(q, z) < r′, then z ∈ V and pkD∩U(q, z) ≤ kD(q, z), where p = r′/r.

To prove this claim, recall that kD is the integrated form of the
Kobayashi metric

κD(ζ;X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, αϕ′(0) = X}

3Let a, b, c ∈ C∗ and d1 = 1− a/b, d2 = 1− b/c, d3 = 1− a/c. We may assume
that d(a, c) = log(1 + |d3|). Then

d(a, b) + d(b, c) ≥ log(1 + |d1|) + log(1 + |d2|)

= log(1 + |d1|+ |d2|+ |d3 − d2 − d1|) ≥ log(1 + |d3|) = d(a, c).



THE KOBAYASHI BALLS OF (C-)CONVEX DOMAINS 7

(cf. [5]). Fix an ε > 0. Then we may find a smooth curve s : [0, 1]→ D
such that s(0) = q, s(1) = z and

kD(q, z) + ε >

∫ 1

0

κD(s(t); s′(t))dt.

Since D ∩ U is convex and its boundary contains no affine discs
through a, then a is a peak point for D∩U (cf. [8, Theorem 6]). Hence
the strong localization property for the Kobayashi metric holds (cf. [7,
Theorem 1 and Corollary 2]). So there exists a neighborhood V ⊂ U
of a such that

κD(ζ;X) ≥ pκD∩U(ζ;X), ζ ∈ D ∩ V, X ∈ Cn.

Set t′ = sup{t : s([0, t]) ⊂ V } and z′ = s(t′). Then

r′ + ε > kD(q, z) + ε >

∫ t′

0

κD(s(t); s′(t))dt

≥ p

∫ t′

0

κD∩U(s(t); s′(t))dt ≥ pkD∩U(q, z′) ≥ pcD∩U(q, z′).

Taking a peak function for D∩U at a as a competitor in the definition
of cD∩U , it follows that

lim
q→a

inf
ζ 6∈V

cD∩U(q, ζ) = +∞.

Therefore, we may find a neighborhood W ⊂ V such that if q ∈ W,
then z′ ∈ V. Therefore z′ = z and the claim follows by letting ε→ 0.

(iii) Note the proof of [11, Proposition 1.5] implies the tautness of
C-convex domains. Then, in view of Theorem 1 (iii), it suffices to show
the following.

Claim 2. Let U be a neighborhood of a such that D ∩ U is taut.
There exist neighborhoods W ⊂ V ⊂ U of a such that if q ∈ D∩W and
lD(q, z) < r′, then z ∈ V and plD∩U(q, z) ≤ lD(q, z), where p = r′/r.

We point out that, in contrast to (ii), we do not know if a is a local
peak point.

It is easy to see that Claim 2 will be a consequence of

Claim 2’. If (ϕj) ⊂ O(D, D) and ϕj(0)→ a, then ϕj ⇒ a.

To prove Claim 2’, assume the contrary. Since D is bounded, then,
passing to a subsequence (if necessary), we may suppose that ϕj ⇒
ϕ ∈ O(D, D) and ϕ 6= a. Using again that D is bounded, we may
find an s ∈ (0, 1) such that ϕj(sD) ⊂ U for any j. It follows by the
tautness of D ∩ U that ϕ(sD) ∈ ∂D. Since ∂D contains no affine discs
through a ∈ ∂D, we get similarly to the proof of [12, Proposition 7]
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that ϕ(sD) = {a}. Then the identity principle implies that ϕ = a which
is a contradiction.
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