
Noname manuscript No.
(will be inserted by the editor)

Efficient Computation of 3D Morse-Smale Complexes and
Persistent Homology using Discrete Morse Theory

David Günther · Jan Reininghaus · Hubert Wagner · Ingrid Hotz

Received: date / Accepted: date

Abstract We propose an efficient algorithm that com-

putes the Morse-Smale complex for 3D gray-scale im-

ages. This complex allows for a efficient computation of

persistent homology since it is, in general, much smaller

than the input data but still contains all necessary in-

formation. Our method improves a recently proposed

algorithm to extract the Morse-Smale complex in terms

of memory consumption and running time. It also al-

lows for a parallel computation of the complex. The

computational complexity of the Morse-Smale complex

extraction solely depends on the topological complex-

ity of the input data. The persistence is then computed

using the Morse-Smale complex by applying an exist-

ing algorithm with a good practical running time. We

demonstrate that our method allows for the computa-

tion of persistent homology for large data on commod-
ity hardware.

Keywords persistent homology · Morse-Smale

complex · discrete Morse theory · large data

D. Günther
Max-Planck Institute for Informatics
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
E-mail: dguenther@mpi-inf.mpg.de

J. Reininghaus, I. Hotz
Zuse Institute Berlin
Takustraße 7, 14165 Berlin, Germany
E-mail: reininghaus, hotz@zib.de

H. Wagner
Institute of Computer Science
Jagiellonian University
Lojasiewicza 6, 30-348 Krakow, Poland
E-mail: hubert.wagner@ii.uj.edu.pl

1 Introduction

It is clear that with the rapid increase of the amount

of data produced, availability of efficient tools to ana-

lyze these data is of great importance. Computational

topology [9], due to its ability to extract essential fea-

tures of the analyzed data, is becoming a widely-used

method. In particular, persistent homology introduced

by Edelsbrunner et al. [10] has drawn much attention,

since it robustly extracts the topological structure of

the data.

While algorithms with good practical running times

have been proposed [7], exact computation of persis-

tence for large 3D image data remains a challenging

problem due to huge memory requirements.

Forman’s discrete Morse theory [11,12], which is the
theoretical foundation of our algorithm, allows us to

reduce data in a way which preserves the topological

structure. This representation of the data, called the

Morse-Smale complex, is much more compact but still

contains all the necessary topological information for

persistent homology computation.

Inspired by the work of Robins et al. [25], we use

discrete Morse theory to compute persistent homology.

Günther et al. [14] showed that the Morse-Smale com-

plex can be computed in O(cn) ⊆ O(n2), where n de-

notes the size of the input data and c the number of its

critical points. In this paper we propose an improved

version of Algorithm 3 in [14]. The memory consump-

tion of our improved algorithm depends solely on the

topological complexity of the input data and it also

allows for a parallel computation of the Morse-Smale

complex.

We present results of an efficient implementation,

which show that our algorithm is suitable for real-world

applications. The method introduced in this paper al-

2 David Günther et al.

lows for memory-efficient computation of persistent ho-

mology of large 3D images. For example, we only need

about 14GB of memory for a data set of size 1120 ×
1131 × 1552, in contrast to the 500GB that would be

necessary using standard algorithms.

The remaining part of this paper is organized as

follows. The related research is described in Section 2.

In Section 3 the theoretical background of persistence

and discrete Morse theory is introduced. In Sections 4

and 5 we present our method and show computational

results. Finally, we summarize the paper with a brief

discussion in Section 6.

2 Related Work

Persistence We will focus on previous work on com-

puting persistence. For general applications of persis-

tence see [9]; for application in the context of image

data, see [4,23].

The standard, algebraic algorithm [9] for persistence

has cubic running time in the size of the input (i.e.

image). While a simplicial complex example was con-

structed by Morozov [22], showing that this pessimistic

execution can actually occur, the behavior of this al-

gorithm is only slightly super-linear in practical situa-

tions [7].

When focusing on 0-dimensional homology, union-

find data structures can be used to compute persistence

in time O(nα(n)) [9], where α is the inverse of the Ack-

ermann functions and n the size of the input.

Milosavljevic et al. [21] showed that persistent ho-

mology can be computed in matrix multiplication time

O(nω) where the currently best estimation of ω is 2.376.
Chen and Kerber [6] proposed a randomized algorithm

to compute only pairs with persistence above a cho-

sen threshold. Despite showing an improved theoretical

complexity, it is unclear whether these methods are bet-

ter than the standard persistence algorithm in practice.

A recent variation of the standard algebraic algo-

rithm [9], called killing, introduced by Chen and Ker-

ber [7] significantly reduces the amount of computa-

tions. This idea was also used by Wagner et al. [27] to

compute persistence for n−dimensional images.

In general, purely algebraic methods suffer from high

memory requirements. In our approach, we alleviate

this effect by reducing the size of data.

Discrete Morse Theory Morse Theory [20] is a mathe-

matical theory which relates the topology of the domain

of a function with critical points of this function. For

example, every continuous function defined on a sphere

has at least one critical point. The set of critical points

a) b)

Fig. 1 Illustration of a cubical complex and its derived cell
graph. Image a) shows the cells of a small uniform grid in an
exploding view. Image b) shows the derived cell graph GC .
The nodes representing the 0-, 1-, 2-, and 3-cells are shown
as blue, green, yellow and red spheres respectively.

extracted should therefore satisfy the constraints de-

scribed by Morse theory. Note that due to the global

nature of topological consistency it is difficult to enforce

these constraints in local numerical algorithms. Fortu-

nately, Forman [11,12] developed a discrete version of

Morse theory, which allows for algorithms that provably

result in a consistent set of critical points.

The first such algorithm was proposed by Lewiner et

al. [18,19] who also conjectured that persistence could

be efficiently computed using discrete Morse theory. Re-

cently, several other such algorithms were suggested [3,

13,24]. Gyulassi et al. [15] introduced a fast stream-

ing approach to extract the essential critical points of

large data. The resulting complex is iteratively sim-

plified to differentiate between spurious and important

critical points. However, this approach is not suited for

exact persistence computation since not all points in

this complex can be paired.

Robins et al. [25] presented the first algorithm which

is provably correct in 3D in a sense that the computed

critical points correspond one-to-one to the topological

changes in the sub-level sets of the image data. Günther

et al. [14] built on the method by Robins et al. and

proposed an optimal Morse-Smale complex extraction

algorithm. In this paper, we further improve the al-

gorithm by Günther et al. to enable also a memory-

efficient parallel computation of the complex.

3 Theoretical Background

Complexes The input of the persistent homology com-

putation is a 3D gray-scale image: an array

Ω = m× k × ` and a function f : Ω → R. To cap-

ture the topological information, we need to represent

this as a complex, which is a decomposition of a space

into cells of different dimensions. See Figure 1a) for

an example. During the first part of computations we

Mose-Smale Complex and Persistence Computation 3

use cubical complexes [17], whose cells consist of ver-

tices, edges, squares and full cubes. The Morse-Smale

complex we extract later belongs to the class of CW-

complexes, which is more general and its p-cells are only

required to be homeomorphic to p-spheres [16].

Boundary maps and matrices Cells of different dimen-

sions are connected by boundary relations. For exam-

ple, the boundary of an edge E = (a, b) are the vertices

a and b. If a (p− 1)-cell α is in the boundary of a p-cell

β, we say α is a proper face of β. Note that if a complex

contains a cell c, it must also contain all the faces of c.

For any p-dimensional cell c, its boundary, denoted

by ∂pc, is the set of its (p − 1)-dimensional faces. We

now define this relation algebraically. Let a p-chain be a

formal sum of p-cells with Z2 coefficients (other groups

of coefficients can be used, but this one is the most

suitable for our task). This enables us to extend the

boundary operator linearly to p-chains. For any p-chain

c =
∑
aici, we have ∂pc =

∑
ai∂pci. The p-chains,

together with (modulo 2) addition, form a group of p-

chains, denoted by Cp.

If we specify a unique index for each cell, a p-chain

corresponds to a vector in Znp

2 , where np is the number

of p-dimensional cells in the complex. The p-dimensional

boundary operator ∂p can be written as an np × np−1
binary matrix (also denoted ∂p) whose columns are the

boundaries of the p-cells.

The above is summarized by the chain complex,

which can be viewed as an algebraic representation of

a complex C [11]

C : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (1)

Filtration For a given complex K, a filtration is a

nested sequence of complexes: ∅ = K0 ⊆ K1 ⊆ . . . ⊆
Kn = K [9,10]. In our case, it is induced by the input

data f : Ω → R as follows. First, the values given by

f on the 0-cells of K, are extended to all cells of K

by a so-called lower-star filtration: each cell is assigned

the maximum function value of the vertices it contains.

The filtration of K with respect to f is then defined

by the sub-level complexes Kt = f−1(−∞, t]. Imagine

that we start with an empty complex and at each step

of the filtration one or more cells are added.

Persistence First, we will give a basic intuition be-

hind homology and persistent homology. For this pa-

per, we can say that homology detects topological fea-

tures: connected components, tunnels, and voids for a

fixed thresholding (sub-level set) of a gray-scale image.

Persistent homology, in turn, describes the evolution of

topological features looking at consecutive thresholds.

Fig. 2 Homological persistence of a 1D function f(x). The
persistence pairs consist of (x1, x4) and (x3, x2). The persis-
tence of x1 and x4 is therefore given by f(x4)− f(x1), while
the persistence of x2 and x3 is given by f(x2)− f(x3).

More precisely, given a complex K and a filtering

function f : K → R, persistent homology studies ho-

mological changes of the sub-level complexes, Kt =

f−1(−∞, t]. The algorithm captures the birth and death

times of homology classes of the sub-level complexes,

as the threshold t grows from −∞ to +∞. By birth,

we mean that a homology feature comes into being; by

death, we mean it either becomes trivial or becomes

identical to some other class born earlier. See Figure 2

for an example. The persistence, or lifetime of a class,

is the difference between the death and birth times.

Homology classes with larger persistence reveal infor-

mation about the global structure of the space K, de-

scribed by the function f .

The overall output of the computations is a list of

persistence pairs of the form (birth, death). This infor-
mation can be visualized in different ways. One well-

accepted idea is the persistence diagram [8], which is

a set of points in a two-dimensional plane, each corre-

sponding to a persistent homology class. The coordi-

nates of such a point are the birth and death time of

the related class.

An important justification for the usage of persis-

tence is the stability theorem. Cohen-Steiner et al. [8]

proved that for any two filtering functions f and g, the

difference of their persistence is always upper bounded

by the L∞ norm of their difference:

‖f − g‖∞ := max
x∈K
|f(x)− g(x)|. (2)

This enables robust estimation of how persistence

is affected by perturbation of the input (e.g. noise).

This guarantees that persistence can be used as a sig-

nature. Whenever two persistence outputs are different,

we know that the functions are definitely different.

4 David Günther et al.

a) b)

c) d)

Fig. 3 Basic definitions of discrete Morse theory: a) the cell
graph GC , the node labels indicate the dimension of the rep-
resented cells; b) a combinatorial gradient field V defined on
GC , the edges contained in V are depicted by solid lines, the
unmatched nodes – the critical nodes – are shown as black
spheres; c) a combinatorial streamline alternating between
V and its complement; d) two 1-separatrices of V (blue and
green) emanating at a 1-saddle (yellow) and ending in a min-
imum (blue).

Discrete Morse Theory In the following we assume

that a three dimensional cubical complex C is given. We

use the lower-star filtration defined above to extend the

input function to all cells. The cell graph GC = (N,E)

encodes the combinatorial information contained in C.

The nodes N of the graph consist of the cells of the

complex C and each node up is labeled with the dimen-

sion p of the cell it represents. The edges E of the graph

encode the neighborhood relation of the cells in C. If

the cell up is in the boundary of the cell wp+1, then

ep = {up, wp+1} ∈ E. We label each edge with the di-

mension of its higher dimensional node. An illustration

of a cell graph is shown in Figure 1b). Note that the

node indices, their adjacency and their geometric em-

bedding in R3 are given implicitly by the regular grid

structure of Ω.

A subset of pairwise non-adjacent edges is called a

matching M ⊂ E. Using these definitions, a combinato-

rial gradient field V on a regular cell complex C can be

defined as a certain acyclic matching of GC [5]. The set

of combinatorial gradient vector fields on C is given by

the set of these matchings, i.e., the set of Morse match-

ings Mφ of the cell graph GC . An illustration of a 2D

Morse matching is shown in Figure 3b).

We now define the extremal structures of a combi-

natorial gradient vector field V in GC . The unmatched

nodes are called critical nodes. If up is a critical node,

we say that it has index p. A critical node of index

p is called minimum (p = 0), 1-saddle (p = 1), 2-

saddle (p = 2), or maximum (p = 3). A combinato-

rial p-streamline is a path in the graph whose edges are

of dimension p and alternate between V ⊂ E and its

complement E \ V . In a Morse matching, there are no

closed p-streamlines. This defines the acyclic constraint

for Morse matchings. A p-streamline connecting two

critical nodes is called a p-separatrix. A p-separation

surface is given by all combinatorial 2-streamlines that

emanate from a critical point of index p. An illustration

of extremal structures is shown in Figure 3.

Using the above definitions, we can now define the

chain complex associated to the Morse-Smale complex

CV with coefficients in Z2

CV : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (3)

The Morse-Smale complex CV is induced by a given

combinatorial gradient field V ⊂ E in a cell graph

GC = (N,E). The chain groups C` are generated by

the critical nodes of V with index `. The boundary

maps ∂` are defined by the combinatorial streamlines

of V : if u` ∈ C` is connected to w`−1 ∈ C`−1 by an odd

number of combinatorial streamlines, then w`−1 is in

the boundary of u`. Considering only pairs (w`−1, u`)

with an odd number of connections reduces the general

formula by Forman [11] to a simplified version for Z2

coefficients.

Forman proves, that the homology of C is always

isomorphic to the homology of CV [11]. If the criti-

cal nodes contained in V correspond one-to-one to the

topological changes in the sub-level complexes the per-

sistent homology of C therefore coincides with the per-

sistent homology of CV [25].

Since, in practice, CV is a lot smaller than C, we can

use discrete Morse theory to devise a memory-efficient

algorithm for persistent homology.

4 Method

In this section we describe our overall algorithmic pipe-

line to compute persistent homology in a memory ef-

ficient manner. The input of the pipeline consists of a

3D gray-scale image. It is represented by a 3D array

Ω = m × k × ` and a function f : Ω → R. To com-

pute persistent homology, we initially represent Ω by

the cubical complex C.

The pipeline consists of three steps. In Section 4.1

we describe the construction of the discrete gradient

field V associated to C and f . In Section 4.2, we pro-

pose an improved algorithm to extract the Morse-Smale

complex CV defined by V . For completeness, we also

describe the computation of the persistent homology

of CV in Section 4.3. We conclude this section with a

brief analysis of the computational complexity, mem-

ory consumption, and some implementational details

in Section 4.4 and 4.5.

Mose-Smale Complex and Persistence Computation 5

4.1 Discrete Gradient Field

To compute the discrete gradient vector field V , we use

the algorithm ProcessLowerStar [25]. The basic idea of

this algorithm is to apply simple homotopic expansions

in the lower star of each 0-node. The algorithm results

in a combinatorial gradient field V whose critical nodes

coincide with the changes of the topology of the sub-

level complexes of C. For more algorithmic details and

the proof, we refer the interested reader to [25].

4.2 Morse-Smale Complex Extraction

We now describe how we compute the chain complex

associated to the Morse-Smale complex (3) induced by

the combinatorial gradient field V ⊂ E.

While the chain groups C` can be easily extracted

from N by collecting the nodes not covered by V , ef-

ficient computation of ∂` is challenging. The algorithm

ComputeBoundaryB in [14] computes ∂` by counting

the number of paths between pairs of critical nodes.

However, manifolds emanating at different critical points

can merge. This yields a partial multiple traversal of

manifolds during a breadth-first search.

We now present our improved method to compute

∂` with a worst case complexity of O(n2). The main

idea of Algorithm 1 is the following. We first collect all

critical (unmatched) nodes in V . For each of these nodes

we then integrate the corresponding manifolds to col-

lect the critical nodes in the respective (co-)boundaries

but avoid multiple traversals of the manifolds. Since the

connections between critical points are defined as inter-

section of their manifolds, we apply a backintegration

for each of the (co-)boundary nodes restricted to the al-

ready integrated manifold. This results in a set of edges

describing all connections between critical nodes.

Algorithm 1 ComputeBoundary(GC , V, j, `)

Input: GC = (N,E), V ⊂ E, j ∈ {0, 1}, ` ∈ {1, 2, 3}
Output: Binary matrix ∂`
1: S ← GetAllManifolds(GC , V, `, j)
2: I ← GetIntersection(GC , V, S, `, j)
3: for all cp ∈ C`−j do
4: Cc ← CountPaths(GC , V, I, cp, `)
5: for all wk ∈ Cc do
6: if k < p then
7: ∂`(cp, wk)← ∂`(cp, wk) + 1
8: else
9: ∂`(wk, cp)← ∂`(wk, cp) + 1

The challenging task is now to check whether a pair

of critical nodes is connected by an odd number of sep-

aratrices. If this is the case, these nodes are connected

Algorithm 2 GetAllManifolds(GC , V, `, j)

Input: GC = (N,E), V ⊂ E, ` ∈ {1, 2, 3}
Output: S ⊂ E
1: E` ← {ek ∈ E : k = `}
2: S ← ∅
3: for all cp ∈ C`−j do
4: E` ← E` \ S
5: S ← S ∪AlternatingRestrictedBFS(GC , V, E`, cp)

in the sense of Z2 and are inserted in the boundary ma-

trix. To count the number of connections, we compute

the multiplicity of paths from one critical node to an-

other critical node but restricted to the intersection of

the corresponding manifolds.

The input of Algoithm 1 consists of the cell graph

GC = (N,E), a discrete gradient field V ⊂ E, a flag

j, and the index ` of the resulting boundary map ∂`.

If j = 0, the algorithm computes ∂` by finding the

boundaries of the elements contained in C`. If j = 1,

the algorithm computes ∂` by finding the co-boundaries

of the elements contained in C`−1. Note that both cases

result in the same ∂`, the choice of j only affects the

running time, see Section 4.5.

For notational simplicity in the following explana-

tion, we only describe the algorithms in detail for j = 0

– we consider the boundary of c` ∈ C`. However, all

algorithms are designed to work also for j = 1.

We first compute the edges S ⊂ E that are covered

by the combinatorial `-streamlines emanating from all

elements of C` (Line 1) using Algorithms 2, 3 and 7.

Note that each edge is traversed only once. All already

visited edges are removed from the set of admissable

edges (Line 4, Algorithm 2 and Line 6, Algorithm 3).

Algorithm 3 AlternatingRestrictedBFS(GC , V,R, c
p)

Input: GC = (N,E), V ⊂ E,R ⊂ E, cp ∈ N
Output: T ⊂ R ⊂ E
1: T ← ∅
2: Q.push({cp, false})
3: while Q 6= ∅ do
4: {up, f lag} ← Q.pop()
5: W ← AlternatingEdges(GC , V, up, f lag)
6: W ← (W ∩R) \ T
7: for all {up, wk} ∈W do
8: T ← T ∪ {up, wk}
9: Q.push({wk,¬flag})

We then collect all critical nodes CS ⊂ C`−1 that are

covered by S. These nodes are the possible boundary

nodes. To compute the boundary of an individual c` we

need to count the number of combinatorial streamlines

connecting c` with c`−1 ∈ CS .

To do this efficiently, we first compute the set of

edges I ⊂ S of all combinatorial streamlines connecting

6 David Günther et al.

the elements of C` with CS (Line 2) using Algorithm 4,

3 and 7. Each edge is again only traversed once.

Algorithm 4 GetIntersection(GC , V, S, `, j)

Input: GC = (N,E), V ⊂ E,S ⊂ E, ` ∈ {1, 2, 3}, j ∈ {0, 1}
Output: I ⊂ E
1: CS ← {u`−1+j ∈ N : ∃{u`−1+j , wk} ∈ S} ∩ C`−1+j

2: I ← ∅
3: for all cp ∈ CS do
4: S ← S \ I
5: I ← I ∪AlternatingRestrictedBFS(GC , V, S, cp)

All edges I ⊂ E between the elements of C` and CS
are now computed. In the following we need to count

the the number of paths in I that connect c`−1 ∈ CS
to c` ∈ C`.

This is done in Line 4 using a simple graph algo-

rithm shown in Algorithm 5. Since I represents all paths

between critical nodes, we need to extract the paths for

a given pair (c`−1, c`). The nodes covered by these paths

then restrict the counting of the paths. This is obtained

in Line 1 using Algorithm 6. Since we are only inter-

ested in the Morse-Smale complex with coefficients in

Z2, it suffices to count the number of paths modulo 2.

This is obtained by taking the symmetric difference 4
in Line 14 in Algorithm 5.

4.3 Persistence

To compute persistence we use the standard algebraic

algorithm [9] with a modification by Chen and Ker-

ber [7]. This algorithm operates on a boundary matrix,
∂`, of the complex C, representing the input data. A

reduced matrix is computed, from which the list of per-

sistent pairs, as defined in Section 3, can be easily read.

We refer the reader to [7] for more details.

In contrast to previous work [7,27], we apply the

matrix reduction algorithm to the Morse-Smale com-

plex CV instead of the initial complex C. Since CV is

much smaller than C in typical situations, storing the

boundary matrices consumes significantly less memory

(see Table 1).

4.4 Computational complexity

We now give a brief analysis of the computational com-

plexity of our method. We denote the number of ver-

tices of C by n and the number of critical nodes in a

combinatorial gradient field by c. Note that the pseudo

code shown in the algorithms in this section has been

optimized for compactness and clarity instead of a best

Algorithm 5 CountPaths(GC , V, I, c
p, `)

Input: GC = (N,E), V ⊂ E, I ⊂ E, cp ∈ N
Output: Cc ⊂ N
1: NS ← GetManifoldNodes(GC , V, I, cp, `)
2: CV ← {up ∈ N : @{up, wk} ∈ V }
3: P ← ∅
4: L← {cp}
5: Q.push({cp, false})
6: while Q 6= ∅ do
7: {up, f lag} ← Q.pop()
8: P ← P ∪ {up}
9: W ← AlternatingEdges(GC , V, up, f lag)

10: W ←W ∩ I
11: for all {up, wk} ∈W do
12: if wk ∈ NS then
13: if up ∈ L then
14: L← L4 {wk}
15: Z ← AlternatingEdges(GC , V, wk, f lag)
16: Z ← Z ∩ I
17: NZ ← {zq ∈ N : ∃{zq, wk} ∈ Z}
18: if NZ ⊂ P then
19: Q.push({wk,¬flag})
20: Cc ← L ∩ CV \ cp

computational complexity. In the following analysis, we

consider an optimal implementation of these algorithms.

The realization of such an implementation from the

pseudo code only poses some minor technical difficul-

ties.

The complexity for the construction of the combina-

torial gradient field using the algorithm proposed in [25]

is O(n) – for each node of index 0 we only work on its

lower star which has a constant size in the case of cu-

bical complexes.

Analyzing the complexity of the Morse-Smale com-

plex extraction described in Algorithm 1 is more intri-

cate.

Algorithm 6 GetManifoldNodes(GC , V, I, c
p, `)

Input: GC = (N,E), V ⊂ E, cp ∈ N, ` ∈ {1, 2, 3}
Output: NS ⊂ N
1: E` ← {ek ∈ E : k = `} ∩ I
2: S ← AlternatingRestrictedBFS(GC , V, E`, cp)
3: NS ← ∅
4: for all {up, wk} ∈ S do
5: if up /∈ NS then
6: NS ← NS ∪ {up}
7: if wk /∈ NS then
8: NS ← NS ∪ {wk}

Algorithm 7 AlternatingEdges(GC , V, u
p, f lag)

Input: GC = (N,E), V ⊂ E, up ∈ N, flag ∈ {false, true}
Output: W ⊂ E
1: if flag = true then
2: W ← {{up, wk} ∈ E : {up, wk} ∈ V }
3: else
4: W ← {{up, wk} ∈ E : {up, wk} ∈ E \ V }

Mose-Smale Complex and Persistence Computation 7

Table 1 Running times and memory consumption for 3D images of different size and topological complexity. The second
column shows the topological properties of the data sets. The third column shows the total memory consumption of our
method compared to Wagner et al. [27] using 1 and 24 logical cores. The total running time for the construction of the initial
gradient field, the boundary matrix and the matrix reduction using 1 and 24 logical cores are compared to the times of Wagner
et al. [27] in the fourth column.

Data Properties Memory (MB) Time (sec)
Dimensions

∑
|C`| |I| [27] 1× 24× [27] 1× 24×

Silicium 98×34×34 1’109 13’882 30 1 1 5 1 < 1
Fuel 64×64×64 667 4’982 82 1 1 1 3 < 1
Neghip 64×64×64 5’709 47’025 82 2 3 2 3 < 1
Hydrogen 128×128×128 24’257 168’626 538 17 19 37 21 2
Engine 256×256×128 1’035’127 7’331’167 2’127 296 236 82 141 16
X-mas Present 246×246×221 4’836’087 21’201’265 3’112 727 901 16’007 444 153
Aneurysm 256×256×256 75’485 1’308’765 4’250 135 146 211 170 14
Bonsai 256×256×256 344’277 5’886’696 4’250 225 273 175 219 22
Foot 256×256×256 1’658’617 12’162’264 4’250 405 505 171 270 30
Noise 256×256×256 11’761’873 42’389’191 * 1’517 1’866 * 619 101
Supine 512×512×426 27’440’949 142’886’726 26’133 4’701 5’876 1’496 2’369 339
Prone 512×512×463 28’976’885 152’326’748 28’406 5’009 6’262 2’180 2’525 354
X-mas Tree 512×499×512 50’043’123 215’181’923 * 7’392 9’162 * 3’374 562
Molecule 1’120×1131×1552 1’766’615 40’178’429 * 13’837 14’168 * 18’134 1’504

We start with the essential Algorithm 3. Due to Line

6, the union in Line 8 is disjoint, which implies that the

complexity of Algorithm 3 is O(|T |). Since Algorithm 2

only calls Algorithm 3, its complexity is O(|S|). The

complexity of Algorithm 4 is O(|I|), since due to Line

4, the union in Line 5 is disjoint.

Finally, we need to consider the complexity of the

loop in Algorithm 1. The loop in Line 3 is executed

O(c) times. The complexity of its body is given by the

complexity of Algorithm 5. In Line 1 of Algorithm 5

Algorithm 6 is called, which is a direct application of

Algorithm 3. Each node is uniquely inserted and its

complexity is therefore O(|NS |) ⊆ O(|I|). The com-

plexity of the body of the while loop in Line 6 of Al-

gorithm 5 is constant. It therefore suffices to count the

number of times that Line 19 is executed. The node wk

is only inserted into Q if it belongs to the local inter-

section (Line 12) and all neighboring nodes zq ∈ NZ
have already been processed (Line 8 and 18). Since wk

can only be inserted by a neighboring node zq, it can

therefore be inserted only once. The complexity of Al-

gorithm 5 is hence O(|I|), since only nodes contained

in I can enter the queue at all.

Note that there holds O(|I|) ⊆ O(|S|) ⊆ O(n). The

overall complexity of Algorithm 1 is hence O(|S|+ |I|+
c|I|) ⊆ O(cn). Since there is a lower bound on the

worst-case complexity for the Morse-Smale complex ex-

traction problem in 3D of O(n2) [25], our proposed al-

gorithm is optimal.

The choice of j does not affect the overall computa-

tional complexity – it only affects the practical running

time of the algorithm, see Section 4.5.

The computational complexity of the matrix reduc-

tion algorithm [7] applied to the Morse complex with c

critical cells is O(c3).

The overall complexity for our method is O(cn+c3).

4.5 Implementational details

Running time To compute the combinatorial gradi-

ent field, the cell graph is decomposed into lower stars

of the 0-nodes. Since this is a disjoint decomposition,

each lower star can be processed in parallel. Also, the

boundaries of the critical points are independent of each

other, which allows a parallel computation. We process
Algorithm 1, 2 and 4 in parallel using OpenMP.

The flag j of Algorithm 1 influences solely its run-

ning time. In 3D, the combinatorial 1-streamlines can

only merge, while the 3-streamlines can only split. As

shown in [25], the computation of the co-boundaries of

all 0-nodes (j = 1, ` = 1) has thereby only a complex-

ity of O(n). The same applies to the boundaries of the

3-nodes (j = 0, ` = 3). In contrast, the computation

of ∂2 has a worst case complexity of O(n2), regardless

of j. The choice of j thereby does not affect the over-

all complexity of Algorithm 1. The practical running

time, however, depends on j. For most inputs, the best

choice is (j = 0, ` = 1), (j = 0, ` = 2), (j = 1, ` = 3),

since the computation of the (co-) boundaries of the 2-

and 1-nodes only amounts to a line integration, as in

this setting, |W | ≤ 1 in Algorithm 3, Line 5.

Memory requirements We need only to compute the

boundary matrices ∂` of the Morse-Smale complex CV ,

which does not require much memory. On the other

8 David Günther et al.

a) 0 2 4 6 8
0

2

4

6

8

10

Data set size (105n)

T
im

e
(m

in
u
te
s)

b)

Fig. 4 Comparison of running times for an analytic function. a) The gray and yellow surfaces depict two different isolevels
of the analytic function g. b) The circle and cross markers show the running times to construct the boundary matrix over
different resolutions for the algorithms in [25] and Algorithm 1, respectively. The (semi-)solid line depicts a least-square fitting
of a linear function for the cross markers. The dotted line depicts a fitting of a quadratic function for the circle markers.

hand, explicit representation of the initial cubical com-

plex C would require enormous amounts of memory. We

therefore represent C only implicitly, using the regular

structure induced by the grid [13,27]. The adjacency

information represented in the cell graph GC = (N,E)

is always computed on-the-fly using index calculations.

Since we enumerate the nodes N and the edges E with-

out gaps, we can represent the combinatorial gradient

field V simply by an array of bits of length |E|. The

sets used in the algorithms depicted in this section can

also be represented using such boolean arrays. However,

boolean arrays of size |E| would result in a huge mem-

ory overhead using a parallel computation (see Table

1). Since we only work on the intersection of manifolds,

arrays of size O(|I|) are sufficient. A look-up map trans-

lates global into local indices. This allows for efficient

set operations.

If the data values on the 0-cells of the complex are

defined by 32-bit single precision floats, then the total

memory overhead factor of our method is about 3 in

our current implementation.

5 Results

In the following, we present some examples to illustrate

our method. All experiments were performed on a ma-

chine with two Intel Xeon E5645 CPUs, which provide

12 physical and 24 logical cores, and 24 GB RAM.

Table 1 shows the running time and memory con-

sumption for different 3D data sets provided by [1,

2,26]. We measured the total memory usage of our

method with one and 24 cores. We also included the

memory consumption of a persistence method [27] work-

ing on the boundary matrices of the initial cubical com-

plex. In the last column of Table 1 we compared the

total running times of our method with the method

proposed by Wagner et al. [27]. Note that a further

comparison to other techniques is also given in [27].

The total memory consumption of our method is

up to a factor 30 less than using a standard persistence

approach. In practice, the Morse-Smale complex CV is

much smaller than the cubical complex C. This enables

the persistence computation of large data. However, the

memory consumption compared to [14] is in most of the

examples slightly larger. This results from the usage

of a translation map. Its size depends on the size of

the intersection. The memory overhead for the parallel

computation, however, is neglectable.

The overall running time using a single core is of

similar order as the timings as in [27]. Using a parallel

computation we observe a speedup factor up to ten in

our current implementation.

To investigate the behavior of Algorithm 1 for noisy

data, we sampled pure uniform noise in the range of

[0, 1] on a uniform 2563 grid. While the cell complex

consists of about 108 nodes, its gradient field contains

only about 107 critical points. Even in the case of pure

noise, the majority of nodes in G are non-critical nodes,

which yields a reasonable memory consumption of a

factor 2 less than a standard persistence approach. Due

to the large number of critical points and the absence

of large scale structures, the corresponding separatrices

are relatively small and well distributed. Hence, they

can be efficiently integrated. The timings as well as the

memory consumption are also given in Table 1.

Figure 4 shows the running times of the Morse-

Smale complex extraction step using the existing al-

gorithm by Robins et al. [25] as well as of Algorithm 1.

The data set is given by sampling an analytic func-

tion g on a uniform grid of increasing resolution and

Mose-Smale Complex and Persistence Computation 9

Fig. 5 Distance field of a molecule. An isosurface of a dis-
tance field, computed from a molecule, as gray transparent
surface is shown. The maxima and the 2-saddles are shown
as red and yellow spheres, respectively. Each sphere is scaled
by its persistence.

adding a small amount of uniform noise in the range of

[−0.5, 0.5] to the samples. The algorithm in [25] scales

quadratically with the number of vertices n in the com-

plex. In contrast, our method scales only linearly. The

individual running times using a single core of Algo-

rithm 1 applied to the analytic function g sampled on a

uniform 963 grid are: (Section 4.1) 10 sec, (Section 4.2)

25 sec and (Section 4.3) 0.1 sec. In contrast, the algo-

rithm in [25] needs (Section 4.2) 486 seconds.

The reason for this behavior stems from the struc-

ture of the data. The function g contains some large

scale structures. Adding noise to it results in many crit-

ical points and the combinatorial 2-streamlines often

merge and split. While this property dramatically in-

creases the practical running time of the algorithm by

Robins et al. [25], our Algorithm 1 is not affected by

this perturbation of the data.

We applied our method to a distance field, com-

puted from a Chaperone protein, shown in Figure 5.

The objective is the extraction of the maxima and 2-

saddles. While the maxima represent the points with

the greatest distance to the atoms, the 2-saddles cor-

respond to the narrow points of the field. These points

define the minimal size of an atom to enter the molecule

from the outside. The data set is of dimension 1120 ×
1131 × 1552 and contains 1’766’615 critical points. A

standard persistence computation would theoretically

require about 500 GB memory. Our approach, in con-

trast, only requires about 14 GB even using multiple

cores, and can thereby be applied on commodity hard-

ware. The total running time as well as the memory

consumption for this example are shown in the last row

of Table 1.

6 Conclusion and Future Work

We presented an improvement of the algorithm pro-

posed in [14] to extract the Morse-Smale complexe from

a given combinatorial gradient field induced by a 3D

gray scale image. This allows for a parallel computa-

tion of the Morse-Smale complex as well as a memory-

efficient persistent homology computation. As shown in

Sections 4 and 5, our algorithm combines many useful

properties:

1. The algorithm for the Morse-Smale complex extrac-

tion is optimal with a worst-case complexity

of O(cn) ⊂ O(n2).

2. The overall complexity for the persistence compu-

tation is O(cn+ c3).

3. The Morse-Smale complex computation requires sig-

nificantly less memory and can be done in parallel.

There are some limitations of our approach:

1. Extending our techniques to more general inputs

like simplicial complexes is possible, but would re-

sult in high memory-usage – we heavily exploit the

compact representation of the initial, cubical com-

plex.

2. Our current method is limited to three dimensions.

Despite these drawbacks, we believe that our method

enables the application of persistent homology in new

fields. Our current implementation can already be used

to analyze very large, complex data-sets.

A fundamental question, which is still an open prob-

lem in the homological persistence literature, is the re-

lation of the topological complexity of a given input

data and the persistence computation times. Since ma-

trix reduction is a global operation, the structure of the

underlying Morse-Smale complex is crucial. This struc-

ture also depends on the imaging process and the data

format. For instance, the aneurysm and bonsai data are

given as 8-bit integer while the prone and supine data

are 16-bit integer CT scans. This may also contribute

to the different timings shown in Table 1.

Acknowledgements This work was supported by the MPI
of Biochemistry, the MPI for Informatics, the DFG Emmy-
Noether research program and Foundation for Polish Science
Geometry and Topology in Physical Models program. We
thank Daniel Baum for providing the molecule data set. We
also thank Herbert Edelsbrunner and Chao Chen for many
fruitful discussions.

10 David Günther et al.

Appendix

Let Ω = [−2, 2]3. The function g : Ω → R is given by

g(x, y, z) = 1 sin(1x) sin(2 y) sin(3 z)

+ 2 sin(2x) sin(1 y) sin(3 z)

+ 3 sin(3x) sin(2 y) sin(1 z)

+ 4 sin(1x) sin(3 y) sin(2 z)

+ 5 sin(2x) sin(3 y) sin(1 z)

+ 6 sin(3x) sin(1 y) sin(2 z)

+ 1 cos(3x) cos(1 y) cos(2 z)

+ 2 cos(2x) cos(1 y) cos(3 z)

+ 3 cos(1x) cos(2 y) cos(3 z)

+ 4 cos(3x) cos(2 y) cos(1 z)

+ 5 cos(2x) cos(3 y) cos(1 z)

+ 6 cos(1x) cos(3 y) cos(2 z).

References

1. The Institute of Computer Graphics and Algorithms
http://www.cg.tuwien.ac.at/research/vis/datasets/

2. Volvis: Voxel data repository (2010).
http://www.volvis.org/

3. Bauer, U., Lange, C., Wardetzky, M.: Optimal topologi-
cal simplification of discrete functions on surfaces. Dis-
crete & Computational Geometry pp. 1–31

4. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing
robustness and persistence for images. In: Proceedings of
IEEE Visualization, vol. 16, pp. 1251–1260 (2010)

5. Chari, M.K.: On discrete Morse functions and combina-
torial decompositions. Discrete Math. 217(1-3), 101–113
(2000)

6. Chen, C., Kerber, M.: An output-sensitive algorithm for
persistent homology. In: Proceedings of the 27th annual
ACM symposium on Computational geometry, SoCG ’11,
pp. 207–216. ACM, New York, NY, USA (2011)

7. Chen, C., Kerber, M.: Persistent homology computation
with a twist. In: 27th European Workshop on Comp.
Geometry (EuroCG 2011) (2011)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability
of persistence diagrams. Disc. and Comp. Geometry 37,
103–120 (2007)

9. Edelsbrunner, H., Harer, J.: Computational Topology. An
Introduction. American Mathematical Society (2010)

10. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topo-
logical persistence and simplification. Discrete & Com-
putational Geometry 28(4), 511–533 (2002)

11. Forman, R.: Morse theory for cell complexes. Advances
in Mathematics 134, 90–145 (1998)

12. Forman, R.: A user’s guide to discrete Morse theory. In:
Seminaire Lotharingien de Combinatoire, vol. B48c, pp.
1–35 (2002)

13. Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T.,
Hege, H.C.: Efficient computation of a hierarchy of dis-
crete 3d gradient vector fields. In: R. Peikert, H. Hauser,
H. Carr, R. Fuchs (eds.) Topological Methods in Data
Analysis and Visualization II, Mathematics and Visu-
alization, pp. 15–30. Springer (2012). TopoInVis 2011,
Zürich, Switzerland, April 4 - 6

14. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Mem-
ory efficient computation of persistent homology for 3D
image data using discrete Morse theory. In: T. Lewiner,
R. Torres (eds.) Proceedings..., pp. 25–32. Conference on
Graphics, Patterns and Images, 24. (SIBGRAPI), IEEE,
Maceió, Los Alamitos (2011)

15. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.:
A practical approach to Morse-Smale complex computa-
tion: scalability and generality. IEEE Transactions on Vi-
sualization and Computer Graphics 14, 1619–1626 (2008)

16. Hatcher, A.: Algebraic Topology. Cambridge University
Press, Cambridge, U.K. (2002)

17. Kaczynski, T., Mischaikow, K., Mrozek, M.: Compu-
tational Homology, Applied Math. Sciences, vol. 157.
Springer-Verlag (2004)

18. Lewiner, T.: Geometric discrete Morse complexes. Ph.D.
thesis, Dept. of Mathematics, PUC-Rio (2005)

19. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete
Morse functions for 2-manifolds. Computational Geom-
etry: Theory and Applications 26(3), 221–233 (2003)

20. Milnor, J.: Topology from the differentiable viewpoint.
Univ. Press Virginia (1965)

21. Milosavljević, N., Morozov, D., Skraba, P.: Zigzag per-
sistent homology in matrix multiplication time. In: Pro-
ceedings of the 27th annual ACM symposium on Com-
putational geometry, SoCG ’11, pp. 216–225. ACM, New
York, NY, USA (2011)

22. Morozov, D.: Persistence algorithm takes cubic time in
the worst case. In: BioGeometry News. Duke Computer
Science, Durhmam, NC (2005)

23. Mrozek, M., Wanner, T.: Coreduction homology algo-
rithm for inclusions and persistent homology. Comput-
ers and Mathematics with Applications 60, 2812–2833
(2010)

24. Reininghaus, J., Günther, D., Hotz, I., Prohaska, S.,
Hege, H.C.: TADD: A computational framework for data
analysis using discrete Morse theory. In: Mathematical
Software – ICMS 2010, pp. 198–208. Springer (2010)

25. Robins, V., Wood, P., Sheppard, A.: Theory and algo-
rithms for constructing discrete Morse complexes from
grayscale digital images. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 33(8), 1646 –1658
(2011)

26. Röttger, S.: http://www9.informatik.uni-
erlangen.de/External/vollib/

27. Wagner, H., Chen, C., Vucini, E.: Efficient computation
of persistent homology for cubical data. In: R. Peikert,
H. Hauser, H. Carr, R. Fuchs (eds.) Topological Methods
in Data Analysis and Visualization II, Mathematics and
Visualization, pp. 91–108. Springer (2012). TopoInVis
2011, Zürich, Switzerland, April 4 - 6

