
NOTE ON COSTARA’S PAPER ”ON THE SPECTRAL
NEVANLINNA-PICK PROBLEM”

MARIA TRYBU LA

Abstract. We give a new proof of characterization of the sym-
metrized polydisc using the notion of polar derivative.

1. Introduction

Let sl, l ≥ 1 be the l-th elementary symmetric function, that is
sl(z) = sl(z1, . . . , zn) =

∑
1≤k1<···<kl≤n zk1 · · · zkl . For n ≥ 1, let s :

Cn → Cn be the function of symmetrization given by the formula

s(z1, . . . , zn) =
(
s1(z1, . . . , zn), . . . , sn(z1, . . . , zn)

)
.

Recall that the map s|Dn : Dn → s(Dn) =: Gn is a proper holomorphic
one (see e.g. [7]), and its image Gn is called symmetrized polydisc. In
2004 Costara gave some characterizations of the symmetrized polidyscs
(see [3]). With any point of the symmetrized polydisc he associate some

rational functions: one over D and another over Dn−1
, which are closely

connected with its geometry. However, in [3] we can not find the way
how they arised. Our aim is to enclose us to that aim, and extend a
little the results from [3]. Polar derivative turns out to be helphful tool
for this purpose.

The symmetrized polydisc appeared in the theory of µ-syntesis (see
e.g. [1]) and turned out to be an important object in the geometric
function theory (see e.g. [4]). The symmetrized bidisc because of its
interesting properties was intensively investigated by many authors,
especially by Agler, Costara, Jarnicki, Pflug, Young, Zwonek (some of
the papers are listed below). It seems to play an important role not
only in complex analysis (it is the first known example of non-convex
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domain for whose the Lempert theorem holds) but also in solving Pick-
Nevanlinna Interpolation Problem for n = 2 (see e.g. [2]).

2. Definition and basic properties of polar derivative

By a circular domain we mean closed interior or exterior of any disc
or halfplane and by circle boundary of any circular domain.

Let z1, . . . , zn be arbitrary complex numbers (not necessarily finite),
z 6= zj, j = 1, . . . , n and let m1, . . . ,mn be non-negative numbers
(masses) of total sum (mass) 1 which are placed at points z1, . . . , zn,
respectively. Choose any linear fractional transformation of complex
plane L which sends z to∞ (that is L is of the form az+b

cz+b
). By center of

gravity ζ of such a mass-distribution with respect to z we understand a
point ζ := ζz, which is unique, if L(ζ) is an ordinary center of gravity
of L(z1), . . . , L(zn) with masses m1, . . . ,mn. Note that point ζ does
not depend on the choice of L. It is worth mentioning that ordinary
center of gravity is a case when z =∞.

Consider all possible mass disstributions with total mass 1 over the
fixed points z1, . . . , zn and the point of reference z distinct from all zν .
Set Cz consisting of the centers of gravity ζz of all mass distributions
of this kind is called a circular-arc polygon. Geometrical interpretation
of that definition is contained in

Lemma 1 ([6]). For any two points w1, w2 ∈ Cz arc of circle through
w1, w2, z with end-points w1, w2 that does not contain z, is contained
in Cz.

A set which with the property described in Lemma 1 is called circularly-
convex with respect to z. The set Cz is the smallest circularly-convex
domain with respect to z that contains the points z1, . . . , zn. When
z =∞, Cz is just a convex hull conv(z1, . . . , zn), and circular-convexity
is reduced to convexity in an ordinary sense.

Note that every circular domain C is circularly-arc convex with re-
spect to any point outside or on C. So, we get

Lemma 2. If the points z1, . . . , zn lie in a circular domain C but z lies
in the complement circular domain to C, then Cz ⊂ C.

From now on, by the center of gravity we mean the center with
special mass distribution m1 = . . . = mn = 1

n
.

Lemma 3 ([6]). Let ζz be a center of gravity of z1, . . . , zn with respect
to z. Every circle through z and ζz separates the points z1, . . . , zn or all
the points lie on the circle. Moreover, if z1, . . . , zn belong to a circular
domain C, then points z, ζz cannot both lie outside C, exception case
z1 = . . . = zn = z = ζz.
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Let f be any polynomial of degree n:

(1) f(z) = C(n, 0)A
(0)
0 + C(n, 1)A

(0)
1 z + . . .+ C(n, n)A(0)

n zn,

where C(n, k) is the binomial coefficient (it is possible that A
(0)
n = . . . =

A
(0)
n−k+1 = 0, A

(0)
n−k 6= 0, and then ∞ is interpreted as a k-fold zero of

f). The point ζz is defined as a center of gravity of a polynomial with
respect to z, if it is a center of gravity of its zeros with respect to z.

Take any point ζ. Polar derivative of f with respect to z is

(ζ − z)f ′(z) + nf(z) =: Aζf(z) if ζ is finite,

or just f ′(z) if ζ = ∞. Notice that degAζf < degf if A
(0)
n 6= 0. Let

points ζ1, . . . , ζk+1 be given, (k+ 1)−th polar derivative f is defined as:

Aζ1 . . . Aζk+1
f := Aζk+1

(Aζ1 . . . Aζkf).

In fact, the order of points ζ1, . . . , ζk+1 is not important, that is the
operations Aζ1 and Aζ2 are commutative. Actually using induction one
might show

(2) Aζ1 . . . Aζkf(z) = C(n, k)k!
n−k∑
j=0

C(n− k, j)A(k)
j zj,

where

(3) A
(k)
j =

k∑
l=0

s̃
(k)
l (ζ1, . . . , ζk)A

(0)
j+l

and if points ζ1 = . . . = ζm =∞ and only this then s̃
(k)
l (ζ1, . . . , ζk) := 0

for l < m and s̃
(k)
l (ζ1, . . . , ζk) := s

(k−m)
l−m (ζm+1, . . . , ζk), and the last one

are elementary symmetric polynomials.
For derivative f ′ of a polynomial f there is a well known Gauss-

Lucas theorem, which says that every convex set which contains all
zeros of f , also contains its critical points. For polar derivative similar
results holds, which is in fact contained in Lemma 3, and which implies
Gauss-Lucas theorem. Namely

Theorem 1 (Laguerre). If all the zeros of the n-th degree polynomial
f(z) lie in a circular domain C and if Z is any zero of Aζf , then not
both points Z, ζ may lie outside C. Furthermore, if f(Z) 6= 0, then
any circle through Z and ζ either passes through all the zeros of f or
separates these zeros.

We say that polynomial g is apolar to polynomial f (both of them
are of degree n) if nth polar derivative of f counted with respect to the
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zeros of the g(z) vanishes. Notice that g is apolar to f if and only if f
is apolar to g, and we express this fact saying that f and g are apolar.

Lemma 4. [6, pg. 60] Let f (as in (1)) be apolar to g, where

g(z) =
n∑
j=0

C(n, j)B
(0)
j zj,

then every two circularly-arc polygons that are circularly convex with
respect to the same point and that contain all the zeros of f(z) and g(z)
respectively, also have at least one common point.

3. Statements and proofs

Let (s1, . . . , sn) εCn. Define P (z) = zn−s1zn−1 + . . .+(−1)nsn. The
[3, Theorem 3.1] can be generalised as follows

Proposition 1. P−1(0) ⊆ D(z0, r) if and only if

(4) sup
z:|z−z0|≥r

∣∣∣Az0P (z)

P ′(z)

∣∣∣ =: f(z) < r.

Let P (z) =
∑n

k=0C(n, k)ajz
j, then

(5)
Az0P (z)

P ′(z)
=

∑n−1
k=0 C(n− 1, k)akz

k∑n−1
k=0 C(n− 1, k)ak+1zk

.

In [3] it is the case when z0 = 0 and r = 1.,

Proof. Let points z1, . . . , zn be all zeros of P (z) and fix any z outside
or on C. Then, in view of Lemma 3, it is enough to notice that

(6)
∣∣∣Az0P (z)

P ′(z)

∣∣∣ = |ζz − z0| ≤ dist(P−1(0), ∂D(z0, r)) < r,

where ζz is a center of gravity P (z) with respect to z. �

Using the same argument as above we get:

Corollary 1. P−1(0) ⊆ D(z0, r) if and only if

sup
z:|z−z0|≥r

∣∣∣Az0P (z)

P ′(z)

∣∣∣ ≤ r.

Corollary 2. P−1(0) ⊆ ∂D(z0, r) if and only if ζzε ∂ D(z0, r) and
(P ′)−1(0) ⊆ D(z0, r) for all z ε ∂D(z0, r).

Proof. Assume that points P−1(0) lie on a circle |z − z0| = r, so ζz
also lies on this circle. Conversly, from Corollary 1 we obtain P−1(0) ⊆
D(z0, r). If P (z̃) = 0, then z̃ must lies on the boundary of that disc.
Indeed, otherwise |ζz − z0| < r for any z ε ∂D \ P−1(0). �
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Similar condition could be writen for those P (z) whose zeros are in
D(z0, r) but neither in nor on |z − z0| = r.

It was characterization of Gn over unit disc. To get characterization
over Gn−1 we use n− 1th polar derivative.

Proposition 2. P−1(0) ⊆ D(z0, r) if and only if there exists 0 <
s < r such that the only zero of Aζ1 . . . Aζn−1P is in D(z0, s) for all
ζ1, . . . , ζn−1 ε /∈ D(z0, r).

Lemma 6 is an anologue of Theorem 3.5 in [3].

Proof. The only zero of Aζ1 . . . Aζn−1P is

−
Az0Aζ1 . . . Aζn−1P

A∞Aζ1 . . . Aζn−1P
=: g(ζ1, . . . , ζn−1).

Of course, g(ζ, . . . , ζ) = f(ζ) where f is as in Lemma 5. Applying
(k-1)-times Lemma 3 gives ’only if’. It remains to show the sufficiency
of the above condition. For this part, notice that (2) and (3) imply
An−1z̃ P (z̃) = P (z̃) for any z̃. �

Lemma 3 gives the following generalization of Proposition 1 and 2
which is the main result in this paper. It extends the main result in
[3].

Proposition 3. Let f be any polynomial of degree n with coefficient
at zn equal 1. The following assertions are equivalent:

(1) P−1(0) ⊂ D(z0, r);
(2)

sup
z /∈D(z0,r)

∣∣∣Az0Aζ1 . . . Aζk−1
f(z)

A∞Aζ1 . . . Aζk−1
f(z)

∣∣∣ < r

for any positive integer number 1 6 k 6 n − 1 and any choice
of the points ζ1, . . . , ζk−1 /∈ D(z0, r);

(3) (2) holds for k = 1;
(4) (2) holds for k = n− 1;
(5) (2) holds for k = n− 1 and ζ1 = . . . = ζn−1 /∈ D(z0, r);
(6) (2) holds for some 1 6 k 6 n− 1;
(7) (2) holds for some 1 6 k 6 n− 1, ζ1 = . . . = ζk /∈ D(z0, r).
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