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Abstract. In this paper we present a new preprocessing technique which simplifies a filtered
complex while preserving its persistent homology. Our method is based based on discrete
Morse theory. We prove that the simplification is optimal, in the sense that the resulting
complex has the minimal number of cells. To achieve this, we use the concept of iterated
Morse decomposition yielding a perfect iterated Morse complex. Finally, we show that using
graph-theoretical algorithms our method can be implemented in an efficient way.

1. Overview

The general problem we tackle is to compute persistent homology of a filtered chain complex
in any dimension. The complex can be simplicial, cubical, or more generally an abstract chain
complex. We filter the complex according to the values of a function defined on its cells.
Often this function is defined on 0-cells and extended to all the cells by the so-called lower star
filtration. The output of the entire procedure is the list of persistence intervals.

In this paper we focus on a preprocessing step. We present an iterative simplification scheme,
which results in a reduced complex, having the least possible number of cells and isomorphic
persistent homology. At each iteration we use a sub-optimal simplification method. We point
out that this method works for persistence and standard homology with field coefficients. In
this paper we focus on persistence with Z2 coefficients.

2. Motivation

Our research in the direction of efficient computations of persistent homology is directly
motivated by the problems we encountered in our ongoing project. In that project we aim at
analyzing large, high-dimensional datasets coming from an application in text-mining. It turned
out that the existing methods, listed in the next section, were inefficient when faced with such
datasets [26].

We aimed at a preprocessing method, which would reduce the size of data before applying
standard computations. In particular we simplify the complex while retaining essential informa-
tion about persistent homology, namely features of non-zero persistence (lifespan). The method
we introduce is based on discrete Morse theory (DMT). DMT is often used as a preprocessing
for (standard) homology computations [18], and recently also for persistence [21]. However,
directly applying this theory is quite limiting, since nothing is guaranteed about the size of the
reduced complex. We strove to have a method which is provably optimal, in the sense that the
simplified complex has the minimum number of cells. Doing a similar thing directly using DMT
is known to be NP-hard [18].

The following paper describes the theory and algorithms for computing persistent homology
using iterated Morse decomposition. We prove that the algorithm is correct for chain complexes
of any dimension. This includes commonly used simplicial and cubical complexes. Further, we
show that the algorithms can be entirely expressed in terms of basic graph-theoretical tech-
niques. We hope that using efficient, distributed graph libraries [19] will result in a scalable
implementation.

The paper is structured as follows. In Section 3 the previous work on this subject is summa-
rized. In Section 4 the necessary background in (persistent) homology is given. In Section 5 a
brief introduction to discrete Morse theory is provided. It is explained how the discrete Morse
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theory can be used to compute persistence and that the Morse complex can be build by using
only graph algorithms. In Section 6 the concepts of iterated Morse complex and perfect iterated
Morse complex are introduced and the simplification algorithm is given. Finally in Section 7
conclusions are drawn. Additionally, we give some supplementary material in the Appendix.

3. Previous work.

In 2003, after a few earlier iterations ([27], [11], [23]), persistent homology was introduced
in its contemporary form [8]. In the same paper, a matrix-reduction algorithm to compute
persistence was given. This is considered the standard algorithm to compute persistence. For
a comprehensive presentation the reader should consult [7]. It works for general complexes in
arbitrary dimensions. The worst-case complexity is O(n3), where n is the size of the input
complex. Milosavljevic et al. [20] showed that persistent homology can be computed in ma-
trix multiplication time (O(n2.3727) as of now). Chen and Kerber [4] proposed a randomized
algorithm to compute only pairs with persistence above a chosen threshold. Despite improv-
ing the theoretical complexity, it is unclear whether these methods are better in practice. A
recent variation of the standard algorithm, introduced by Chen and Kerber [5] significantly
reduces the amount of computations. This idea was also used in [25] to compute persistence for
n−dimensional images.

An earlier algorithm by Delfinado and Edelsbrunner for incremental Betti numbers compu-
tation [6] can be adapted for persistence. This algorithm exhibits linear time complexity and
works for sub-triangulations of 3 dimensional sphere. When focusing on 0-dimensional homol-
ogy, union-find data structures can be used to compute persistence in time O(nα(n)) [7], which
is almost linear.

Discrete Morse theory (DMT) was introduced by Robin Forman [10]. Later a more general,
algebraic version was developed [17]. Using DMT for homology computations was introduced
and developed by Lewiner [18]. The computational aspects of Morse complex construction were
discussed in [16] and [18]. The notions of F−perfect and F−optimal Morse complexes were
discussed in [2]. A simplification algorithm for a Morse complexes on 2-manifolds was been
presented in [3]. A divide and conquer algorithm to compute Morse complexes was presented
in [13].

Recently Abhishek Rathod and collaborators [1] reported progress on approximate algorithms
for Morse matching problems. They proved approximation bounds with respect to the optimal
Morse complex (but not the perfect one).

Recently Robins, Wood and Sheppard have provided a practical link between discrete Morse
theory and persistence [24]. In this paper they introduced an optimal simplification scheme
for persistence in case 3-dimensional complexes. This approach aims at reducing the size of
the boundary matrix, while preserving persistence. In case of 3D grayscale images, a parallel
implementation was reported to increase memory and runtime efficiency up to an order of
magnitude [12]. The algorithm used in [24] crucially depends on simple-homotopy theory,
which makes it hard to directly generalize the optimality result to higher dimensions.

A recent paper by Mischaikow et al. [21] proposes a handy theoretical framework, where
discrete Morse theory is extended from complexes to filtrations. In short, by performing a
Morse matching independently for each filtration level, a simplified filtered Morse complex is
obtained. Both methods [24, 21] use the standard matrix-reduction algorithm as the final step
of computations.

The idea of iterating Morse complex construction was proposed in [14, 21] as a heuristic to
decrease the size of complexes before standard algebraic computations. In [26] it was proven
that such an iteration can be used to compute standard homology with field coefficients. In
such a case each cell of the resulting complex corresponds to exactly one homology generator
of the initial complex.

Prompted by the recent contributions we extended the approach of [26] to the setting of
persistent homology. In the approach presented in this paper we merge the existing techniques
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to iteratively simplify the input filtered complex. In short, we build a Morse complex of a Morse
complex... of the input complex, while Morse matchings are performed separately for each
filtration level. We prove that the resulting perfect iterated Morse complex, has two properties:
1) It has the same persistent homology as the input complex. 2) It has the smallest possible
number of cells. We want to point out that this generalizes the result obtained by Vanessa
Robins and collaborators in [24].

4. Background

4.1. Chain complexes and homology. We assume that the input data is represented as a
chain complex with field coefficients. In the most typical case this chain complex comes from
a CW-decomposition of a given space. In practice, simplicial and cubical complexes are used.
For simplicity, we will use Z2 coefficients throughout the paper, as this is the standard setting
for persistence. However, we want to remark that the presented algorithms work for any field
coefficients. Intuitively, in this setting a chain complex can be viewed as a set of abstract cells
connected by a boundary operator as specified below.

Let us fix a chain complex K. Let a p-chain be a formal sum of p-cells with the Z2 coefficients.
The boundary operator ∂p maps p-chains into p− 1-dimensional chains. The definition of chain
complexes requires that ∂p ◦ ∂p+1 = 0.

The chain of (co-)faces is called a (co-)boundary. For any p-chain c =
∑
aici, we have

∂pc =
∑
ai∂pci. The p-chains of K, together with addition modulo 2, form a group of p-chains,

denoted by Cp(K).
The boundary operator ∂p can be written as a binary matrix (also denoted ∂p), whose columns

represent the boundaries and rows represent coboundaries of cells.
To define homology let us first introduce the group of p-cycles, Zp(K) = ker∂p and its

subgroup: the group of p-boundaries, Bp(K) = im∂p+1. The p-th homology group is the
quotient Hp(K) = Zp(K)/Bp(K). The p-th Betti number, denoted by βp(K), is the rank of this
group.

4.2. Filtrations and persistence. Given a complex K and a filtering function g : K → Z,
persistent homology studies homological changes of the sub-level complexes, Kt = g−1(−∞, t].
We require that g(a) ≤ g(B) whenever a is a face of B. Persistent homology captures the birth
and death times of homology classes of the sub-level complexes, as t grows from −∞ to +∞. By
birth, we mean that a homology feature is created; by death, we mean it either becomes trivial
or becomes identical to some other class born earlier. The persistence, or lifetime of a class,
is the difference between the death and birth times. Often a multiset of persistence intervals
is used to represent persistence in a given dimension. A single interval encodes a lifetime of
a homology class. We say that two spaces have same persistence, if their persistence intervals
are the same in the corresponding dimensions. We disregard zero-length persistence intervals
as nonessential.

The formal definition is as follows (after [7]): The p-th persistent homology groups of filtered
complex K are the images of the homomorphisms induced by inclusion, H i,j(K) = imf i,j , where
f i,j : Ki ↪→ Kj .

We want to remind a theorem saying when persistence of two filtered complexes are equal:

Theorem 4.1 (Persistence equivalence theorem, [7]). Consider persistent homology of two
filtered complexes X and Y . Let φi : H∗(Xi)→ H∗(Yi):

. . . H∗(X0) −−−−→ H∗(X1) −−−−→ . . . −−−−→ H∗(Xn−1) −−−−→ H∗(Xn) . . .

φ0

y φ1

y φn−1

y φn

y
. . . H∗(Y0) −−−−→ H∗(Y1) −−−−→ . . . −−−−→ H∗(Yn−1) −−−−→ H∗(Yn) . . .

If the φi are isomorphisms and all the squares commute, then the persistent homology of X
and Y is the same.

3



5. Discrete Morse Theory.

5.1. Morse matching and Morse graph. In this section a brief introduction to discrete
Morse theory is given. For further theoretical details please consult [10, 17]. Let us have a
complex K. Discrete Morse theory partitions the cells of K into matched cells and critical cells.
The critical cells, together with a boundary operator we describe later, form a chain complex
called the Morse complex of K. Importantly, this Morse complex has homology isomorphic with
the homology of the initial complex.

The matching is an injective partial map M : K 7→ K. Each cell of K can be matched with
exactly one of its co-faces. Some cells can remain unmatched, and are called critical. These
cells constitute the resulting Morse complex.

Let us introduce a graph representation of the complex K along with matching M , namely
the Morse graph. This graph is denoted G(K,M) and is a directed graph whose vertices are
formed by cells of K. A directed edge (A, b) is added whenever b is a face of A in the complex.
If b is matched with A in M , the directed edge is reversed. We use G(K) as a shorthand for
G(K, ∅).

The matching M is called acyclic if G(K,M) is a directed acyclic graph. In discrete Morse
we use only acyclic matchings are considered. The paths of G(K,M) which connect two cells
of the same dimension are called V−paths.

A Morse complex is called perfect if each cell corresponds to a homology generator of the
original complex. This depends on the choice of coefficients, for example in case of a field
coefficients F , we can talk about F -perfect matchings [2]. Some spaces do not admit perfect
matchings, for example the Dunce hat, being contractible but non-collapsible. In this case
some critical cells are necessarily spurious: they do not correspond to any homology generators.
One can try to construct a best possible matching, minimizing the number of critical cells.
This problem is known to be NP-complete and MAXSNP-hard [16]. As we explain later, our
approach works by using a series of sub-optimal matchings.

Once an acyclic Morse matching M is obtained, we proceed with computing the Morse
boundary. This procedure is described in [10]. Forman [10] proved that the resulting Morse
complex has isomorphic homology to the homology of the initial complex. He also provided
a formula which computes the boundary of each cell in a Morse complex. Kozlov generalized
these proofs to the setting of arbitrary chain complexes [17]. Later we show that a similar
construction can be also used to simplify persistence.

An procedure for computing a Morse complex is outlined in Algorithm 1. Note that for
algorithmic purposes we represent a chain complex by a graph.

Algorithm 1 Compute Morse complex

Input: Complex K
Output: Resulting Morse complex M(K)
1: M := acyclic Morse matching on G(K)
2: C := list of critical cells of M
3: bd := compute Morse Boundary of G(K,M)
4: M(K) := (C, bd)

5.2. Discrete Morse theory for filtered complexes. In this section we will recall the basic
ideas from [21]. For a filtered chain complex K we say that the Morse matching M is compatible
with filtration of K if for every matched A ∈ K, g(A) = g(M(A))1. In other words, the
matchings are made only between elements of the same filtration level. Consequently, directed
paths cannot move upwards the filtration.

The key result in [21] is that persistence of a filtered complex K and a Morse complex M(K)
with Morse matchings compatible with filtration are the same.

1By M(A) we denote the element matched with A.
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5.3. Computing Morse complex as a graph algorithm. We want to stress that the entire
Morse complex construction can be computed using standard graph algorithms. The chain
complex K (with Z2 coefficients) can be interpreted as a graph G(K). The whole construction
can be divided into two essential parts: finding an acyclic Morse matching and computing the
Morse boundary.

The constructed Morse matching can be essentially arbitrary, as long as its acyclic. In the
literature [16, 18, 26] greedy strategies are usually presented. In a typical situation the aim is
to minimize the number of cells of the resulting complex. As mentioned earlier the problem of
constructing a best possible matching is NP-complete and MAXSNP-hard [16]. In our approach
we build, in polynomial time, a series of Morse complexes using sub-optimal matching, which
results in a perfect iterated Morse complex. Note that we do not contradict the hardness results,
because generally this is not a perfect Morse complex of the initial complex.

A strategy used in [16, 18, 26] reduces the complex in BFS order. The running time is linear
in the size of the graph of the input complex. This graph is initially sparse in practice. In
the worst case it can grow quadratically during the course of the iterations, if all cells become
connected. Therefore the cost of performing a Morse matching is O(n2), where n is the number
of cells in the initial complex.

Finding an acyclic Morse matching is equivalent to the following problem – which directed
edges in the Morse graph can be reversed so that the graph remains acyclic. This is closely
related to the minimum feedback arc set problem. While this problem is NP-hard, efficient
approximation schemes exist [9].

We believe that the main strength of our approach is the possibility of using approximate
or randomized algorithms to obtain an optimal solution. We are currently investigating the
possibility of adapting existing algorithms for related graph problems. We hope to report on
that in the final version of this paper.

5.3.1. Computing Morse boundaries. Intuition: Since a face of a critical cell can be non-critical,
we have to replace it by a corresponding critical cell (or cells). This correspondence is computed
by traversing the Morse graph.

Let us state the problem of computing Morse boundary in terms of graph theory. The Morse
boundary of a critical cell is formed by the set of critical cells which are reachable by an odd
number of paths in the Morse graph. This is a special case of Forman’s formula [10] in case of
Z2 coefficients. Since the number of such paths can grow exponentially in the number of cells,
brute force calculation is ineffective (as noted in [21]). However, this problem can be solved
efficiently, exploiting the fact that the Morse graph is acyclic. One of the possibilities is to
compute the boundary of each cell separately, using memoized recursion. This leads to a simple
to implement algorithm, which works in pessimistic time O(c(|V | + |E|)), where V and E are
respectively the vertices and edges of graph G(K,M) and c is the number of critical cells. For
more efficient algorithms see [18, 12].

6. Iterated Morse Complex construction for persistent homology

In [21] it is shown that when a Morse complex is constructed based on a Morse matching
compatible with filtration, the resulting Morse complex and the initial complex have isomorphic
persistent homology. Here we provide an extension of this result.

Later in this paper we assume that the Morse complex construction is a functor M from
category of filtered chain complexes to itself. It can be seen as an algorithm which computes
a Morse complex of an input chain complex. We say that M is vital if it makes at least one
Morse matching whenever there some possible Morse matchings exist.

Let us take a vital functor M. We assume that the Morse matching used to construct M(K)
is compatible with filtration of K. Filtration values of the cells of M(K) are inherited from the
filtration of cells in K. We construct the perfect iterated Morse complex, M∞(K) which is the
fixed point of the sequence M(K), M1(K), M2(K), . . ., obtained by iterating functor M.
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Algorithmically, a single iteration of our simplification procedure computes of Morse com-
plex. In case of filtered complexes, the performed Morse matchings have to be compatible with
filtration.

Algorithm 2 describes the entire simplification procedure. See Figure 1 for a detailed example
illustrating this algorithm. To compute persistence based on simplified complex M∞(K) use
the matrix reduction algorithm.

Algorithm 2 Simplification for persistence computations

Input: Initial filtered complex K
Output: Simplified complex M∞(K), having the same persistent homology
1: M0(K) = K
2: repeat
3: Mi+1(K) := Morse complex of Mi(K) using matchings compatible with filtration
4: until Mi+1(K) = Mi(K) (which means it is a perfect iterated Morse complex)
5: return Mi+1(K)

If n is the size of the initial complex, at most n iterations are needed to obtain a perfect
iterated Morse complex. Each iteration takes time O(n2), which is the worst-case behavior of the
Morse matching and Morse boundary algorithms. Therefore the overall worst-case complexity
is cubic. This is a very rough estimate. Based on the experiments in [18] we expect to have a
reasonable simplification for the first iteration, therefore consecutive iterations would operate
on a much smaller complex. This is to be verified numerically.

Let us remind that obtaining a perfect Morse complex is impossible in some cases and com-
putationally hard in general. On the other hand, in the iterated Morse decomposition setting,
we always achieve the desired perfect iterated Morse complex.

We show that each cell in M∞(K) either creates or kills a feature of non-zero persistence.
Since we are interested in reducing the number of cells, the resulting complex is the minimal
complex encoding persistence of the original complex.

In [21] it is only assumed that the filtered chain complex is input. Since the resulting Morse
complex is itself a (filtered) chain complex, one can iterate this construction. The main strength
of our approach is based on the following novel observation.

Lemma 6.1. If M is vital and the Morse matchings are compatible with filtration, then the
resulting complex M∞(K) has the following property: For every A ∈ M∞(K) and for every
b1, . . . , bk in boundary of A we have g(A) > g(b1), . . . , g(bk).

Proof. We know that g(bi) ≤ g(A), as we use sublevel-set filtration. Now, if there existed bi
in the boundary of A such that g(bi) = g(A), then a Morse matching would have been made
between A and bi

2. This would contradict the vitality assumption of M. �

Having this property of the resulting complex M∞(K), we can now present the main theorem
of this paper:

Theorem 6.1. Let M∞(K) be the perfect iterated Morse complex obtained from the initial fil-
tered chain complex K by iterative construction of Morse complexes using Morse matchings
compatible with filtration. Then:
K and M∞(K) have the same persistence. (Correctness)
Every cell A ∈M∞(K) either starts or terminates a non-zero length persistence interval. (Op-
timality)

Proof. Correctness: To show that the algorithm is correct we will apply the Persistence Equiv-
alence Theorem for each iteration:

2Note that this is true because we use coefficients in a field.
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. . .
jl−1−−−−→ H∗(Mi

l(K))
jl−−−−→ H∗(Mi

l+1(K))
jl+1−−−−→ . . .y ybdMl ybdMl+1

y
. . .

kl−1−−−−→ H∗(Mi+1
l (K))

kl−−−−→ H∗(Mi+1
l+1(K))

kl+1−−−−→ . . .

We need to show two things:

(1) That the vertical maps are isomorphisms on homology level.
(2) That all squares commute.

First note that the vertical maps send each chain in the input complex to a corresponding
chain of the Morse complex. We remind that to find a corresponding Morse chain we follow
appropriate V-paths in the Morse graph.

1) Vertical arrows are isomorphisms: this is a consequence of Theorem 11.24 from [17], which
states that the upper chain complex M is decomposed by the Morse construction into an acyclic
part and the Morse complex having homology isomorphic with M . It is necessary to use Kozlov’s
theory, since Forman’s proofs work only for CW-complexes.

2) To prove that the squares commute for each i, l, let us take a chain c ∈ Mi
l =

∑
cj . We

show that (bdMl+1 ◦ jl)(c) = (kl ◦ bdMl )(c).

Down and right (kl ◦bdMl ): If cj is critical, it is unchanged by the vertical map. Otherwise, we
follow the paths of the Morse graph to compute the corresponding chain in the Morse complex.
Repeating this computation for every cj , the value of bdMl on c is obtained. Moving right with
inclusion, the chain remains the same.

Right and down (bdMl+1◦jl): first the chain c is inserted by inclusion into level l+1 of filtration,
so it is unchanged. But now we move with the vertical arrow, which might be richer on this
level, as additional paths enter the Morse graph. Note that since we force the paths to be
non-increasing with filtration, bdMl+1 restricted to level l is the same as bdMl . In other words, any
V-path starting at cj at level at most l can only reach cells of lower or equal filtration values.
In particular, it will never reach any critical cell introduced at level l + 1.

Therefore the two images of chain c are the same and the diagram commutes. Applying Per-
sistence Equivalence Theorem finishes the proof that persistent homology is unchanged during
the iterated Morse complex construction.

Optimality :
For the proof we consider the boundary matrix of M∞(K), sorted by filtration values [7].

Note that in general any column either creates or kills a feature, possibly of persistence zero [7].
Let A be a column of this matrix. From Lemma 6.1 we know that g(A) > g(bi), where bi is
the lowest one in column A. Suppose that column A was now reduced. The reduced column is
either zero or non-zero. If it is zero, a homological feature is created. If this feature is not killed
later, its persistence is infinite. If the reduced column is non-zero then is has the lowest one,
b. During the reductions, the lowest ones can only move upwards in the matrix [7], so we have
g(b) ≤ g(bi) < g(A). The homological feature created by b is killed by A, yielding a persistent
interval, [g(b), g(A)], of non-zero length. This proves the optimality. �

Remark 6.2. Intuitively, each level-set (viewed as a chain complex) is optimally simplified in
terms of standard homology. In particular, each cell of a level-set of M∞(K) corresponds
to a homological feature of the corresponding level-set of K. This follows from Lemma 6.1.
Additionally, the boundary relations between level-sets are preserved.

Remark 6.3. Since each cell in M∞(K) encodes the information about either birth or death of
exactly one feature of non-zero persistence, its removal essentially changes persistent homology.
Therefore the number of cells in M∞(K) is minimal. Let p be the number of finite and k the
number of infinite persistence intervals of K. Then |M∞(K)| = 2p + k. If 2p + k is small,
computing persistence in time O((2p+ k)3) can be feasible.
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Sublevel-sets of input filtered complex

First iteration of the algorithm

Arrows show Morse matching 
compatible with filtration.

Part of Morse graph. Searching for Morse 
boundary of the marked critical cell.

Second iteration of the algorithm

Sublevel-sets of the perfect Iterated Morse complex

f

A cb

d

E

f

b

v

b

E

v

u u

u

u

u

A c

Figure 1. A visual representation of two iterations of the iterated Morse com-
plex technique.
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6.1. Example. Figure 1 illustrates various details of the presented method. The exposition is
slightly informal to convey intuition to non-specialists.

The top row shows the input filtered chain complex with three filtration levels. Corresponding
sublevel-sets are depicted, ordered by filtration level. When needed vertices are shown as dots,
colored by filtration value, but normally we assume that a vertex appears if two or more edges
intersect in the picture.

At the first level a single vertex (u) enters, creating a connected component. Next an annulus
enters, adding another connected component and a 1-cycle. Finally at level three the 1-cycle
is filled and the two components are merged. Since persistent homology is always preserved by
our method, the resulting filtration (depicted in the final row) behaves in the same way.

Second and third row, on the left: Each arrow points from a cell to its co-face and indicates
that these were matched. In accordance with the definition of the Morse matching, no two
arrows start or end at the same cell.

Note that all the performed matchings are compatible with filtration, i.e. both matched cells
live on the same level. At the end no more such matchings can be made, which means that the
resulting complex is a perfect iterated Morse complex. In particular edge f cannot be paired
with vertex v or u as they live on different levels.

Admittedly, the matchings were chosen so that the result is easy to visualize. Of course, this
simple example could be optimally simplified in one iteration. An example reacquiring more
iterations, e.g. containing the Dunce hat, would be harder to visualize.

We want to point out that an optimal homological simplification is performed on each level
(in the sense homology of chain complexes). If we look at each level-set (not: sublevel-set) of the
resulting complex, the homology is unchanged, moreover each cell corresponds to a homology
class of the initial level-set. At level one the single vertex is unchanged. At level two, we have a
component (reduced to a point) 1-cycle (reduced to a single edge with its boundary removed).
At level two the situation is less intuitive: the only nontrivial homology is in dimension 2. After
simplification an open 2-cell is left, so the homologies agree.

Second and third row, on the right: part of the Morse graph is drawn. We depict the process
of computing the Morse boundary of a given critical cell. It involves following the arcs to find
all reachable critical cells of dimension lower by one. The found cells which are reachable by an
odd number of paths form the Morse boundary. Some of the paths, marked with dotted-arcs,
end in non-critical cells, which are not interesting. The Morse boundary of cell A is the set of
edges {b, c, d}. Note that the Morse boundary of cell E contains only edge b and not edge f ,
since there are two paths in the graph from E to f . For the same reason, vertex v is not in the
Morse boundary of b (this part of the graph is not depicted).

The bottom row depicts the sublevel-sets of the resulting filtration, namely: the perfect
iterated Morse complex. It is clearly visible that the resulting complex is as simple as possible,
while the behavior in terms persistent homology is preserved.

7. Conclusions

In our opinion the presented preprocessing technique has several advantages:

(1) It is provably optimal, rather than a heuristic, generalizing in [24] to arbitrary dimen-
sions. If the output is small, computing persistence will be fast.

(2) It is based on graph theory – we can use efficient algorithms (exact and approximate)
and their existing implementations – in particular libraries for distributed graph oper-
ations [19].

(3) It is intuitive and easy to visualize.
(4) Since the Morse matchings never go between the filtration levels, they can be made

independently in every filtration level. (No additional cycles will be introduced as the V-
paths never go upward the filtration.) This can be exploited in a parallel implementation.

(5) It can be used to formalize and generalize homology-preserving properties of graph
pyramids used in image recognition [22]. Moreover, they can be beneficial in verified
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homology computation [15] by avoiding matrix operations which are costly to verify
automatically.

We are aware of some drawbacks of our method:

(1) There may exist bad cases, where the complexity will be unsatisfactory. In particular if
there are no zero-length persistence intervals, the preprocessing is futile. (This is rare
in practice, where lower-star filtration is usually employed.)

(2) For some cell complexes a chosen algorithm for Morse matchings may make only a
small number of matchings in each iteration which results in cubical complexity of the
procedure.

(3) This technique might not be suitable for cubical data. Existing methods [12, 25] rely
on the compact representation of cubical grids. In our case the complex need not be a
cubical complex after the first iteration, preventing us from storing it efficiently.
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8. Appendix

8.1. Interpretation of Morse matchings in algebraic algorithm. In this short subsection
we show how the Morse matchings can be interpreted in the language of standard algebraic
algorithm [7]. We want to point out however, that the main strength of the method presented
in this paper is the fact, that it can be implemented with using just graph algorithms. The
intuition is given just for a clarity purposes. In the Figure 2 a simple Morse matching is
interpreted in the matrix.

a b

d

c

1

2

2

ab bc bd
a
b
c
d

ab bc bd
a
b
c
d

1
1 1
1
1

1
1 1

1
1

Figure 2. Left: the initial complex with a single Morse matching. Filtration
value of all vertices is 1 and of the edges are given in the picture. Middle: the
initial boundary matrix. Right: the boundary matrix after the matching ab
with b is made. As one can see, performing the Morse matchings resolves all the
possible future conflicts caused by b at once.
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