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1. Introduction

Pluripotential theory on compact Kähler manifolds has become a separate branch of
research in the last decade. Some results have been known earlier (especially in the case
of projective spaces) yet it was very recently, mainly due to works of Guedj, Zeriahi and
their collaborators ([GZ1], [GZ2], [BGZ], [CGZ], [EGZ], [BEGZ]) as well as Kołodziej
([K2], [K3]) when the theory has grown and separated from its flat counterpart (the
pluripotential theory in domains in Cn). It is worth mentioning that the main motivation
for this development were the applications in geometry and complex dynamics.
Like any other new theory, many of its results are far from being optimal. Also many
natural problems remain open. The methods are often borrowed from the flat theory,
however the ”new” theory is not just a generalization of the ”old” one and not every
”flat” theorem has its ”Kähler” counterpart.
The aim of this work is to systematically describe these concepts, to explain the basic
notions and ideas and to show their applications as well as to indicate possible directions
of future studies. Of course the accent falls onto authors’ own results taken from the
papers [Di1], [Di2], [Di3], [Di4] and from the joint paper with Z. Zhang [DZ].
The autor would like to emphasize that analysis will be the main field of study in the
thesis. Thus the geometric part is treated just as an explanation of the structure of the
underlying spaces for the theory, or as a motivation for the analytic subtleties. As a
consequence of this the geometric sections differ significantly from the others - majority
of the notions defined have been only sketched usually without examples (for which the
reader is directed to the cited literature).
The author’s intention was to put his own results in a perspective of the yet-grown
theory. Due to length limitation some important results have been only sketched. Other
developments, in turn, were described in a much more complete manner than it is usually
done. In such cases the author wanted to emphasize some of the important tools that
were used in his original results.
The manuscript is divided into four sections. The first one contains the basic pluripo-
tential theory in domains in Cn (i.e. the flat theory). The first subsection is devoted to
the notion of currents. Author’s contribution here is the explicit example of (2, 2)-forms
in C4 whose wedge product is not positive (this is taken from [Di4]). Next we sketch the
notion of pluri-fine topology, followed by the classical pluripotential theory (including the
Monge-Ampère operator in the case of bounded plurisubharmonic functions, capacities
and extremal functions). The next topic is the theory of Cegrell classes. This section
finishes with the presentation of one of the author’s main results: an inequality for mixed
Monge-Ampère measures, taken from [Di2].
In the second section all the geometric notions and concepts used in the thesis have
been collected. This part starts by introducing the compact Kähler manifolds. Some
examples are given. Next we sketch the main concepts in the theory of divisors and (line)
bundles. The section ends with a discussion of special divisors (ample, big and nef ones)
and with the notion of canonical bundles and Chern classes.
Third section is devoted to the Monge-Ampère equation on compact Kähler manifold.
This is the heart of the whole thesis containing in particular most of the author’s original
results. After defining the needed notions we consider the geometric interpretation of the
solutions of the mentioned equation and we sketch the proof of the Calabi-Yau theorem as
well as its generalization. Next we discuss an important generalization of Kähler forms-
the so called big forms. We show the continuity of the solutions in a particular case (this
is a result of Z. Zhang, however the full proof has been taken from [DZ]). In the next
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subsections we discuss the Monge-Ampère equation in Cegrell classes. We subsequently
sketch the proof of existence of solutions (the Guedj-Zeriahi theorem) and a proof of
uniqueness (this is an author’s result taken from [Di3]). Next we discuss the problem
of stability of the solutions. Three important theorems are given, due to Błocki [Bl5],
Eyssidieux, Guedj and Zeriahi [EGZ] and Kołodziej [K3]. The last one is generalized and
strenghtened (the argument is taken from [DZ]). The last subsection is devoted to the
higher regularity of the solutions of the Monge-Ampère equation.
The fourth section describes the Kähler-Ricci flow, its applications in geometry and
some problems concerned with this flow which can be attacked with pluripotential meth-
ods. This section may be regarded as an ilustration of current research trends in the field
and as an overview of some of the open problems.
We wish to point out that the continuity of the solutions of the Monge-Ampère equation
in the case of big forms was recently used by Song and Tian [ST2] and Tosatti [To] in
some geometric problems. The inequality for mixed Monge-Ampère measures from [Di2]
and the methods of the proof of uniquenses from [Di3] were, in turn, used by Boucksom,
Eyssidieux, Guedj and Zeriahi in [BEGZ].
We would also like to emphasize that pluripotential theory has become recently a very
efficient tool in complex dynamics. Especially problems related to regularity of potentials
for Green currents or special type measures seem to be strongly linked with the regularity
theory for the complex Monge-Ampère equation discussed in the third section. We shall
not discuss these connections further in the thesis, however we refer to a recent paper of
Dinh, Nguyen and Sibony [DNS] where some results supporting these expectations may
be found.
Notation and conventions. In the thesis we shall use the standard notations in
analysis. When estimating some terms we shall often denote the constants by C. In
case when there are many such constants in order to avoid confusion we shall enumerate
them. The Lebesgue measure is denoted by dλ and we shall keep this notation also in
the manifold case. Consistently with the historical development of mathematics 0 is not
a natural number.
In some cases there is no fixed terminology for the considered notions. Thus apart of
the chosen by the author name for such a notion we shall list also the other alternatives
existing in the literature. We shall proceed similarly also if the notation is not fixed yet
(like in the case of Cegrell classes on manifolds).
Acknowledgments. Let me first express my gratitude to my two motherlands Bul-
garia and Poland for ensuring the necessary conditions for my education and research.
My education lasted during very hard times for both of Them - and this makes their
efforts even much more significant for me.
I also wish to thank my parents who, while not being scientists, have created a pleasant
home atmosphere and have always helped me in my life.
Hearthy thanks also should go to my first school-time teachers Georgi Dimitrov and
professor Nikolai Nikolov for starting and guiding my mathematical interests.
During the studies, seminars and classes I have learned a lot from professor Marek
Jarnicki, professor Włodzimierz Zwonek, professor Zbigniew Błocki oraz doctor Armen
Edigarian. To them, as well as to all my teachers from the Institute of Mathematics of
the Jagiellonian University I send a words of sincere gratitude.
During my studies I had the opportunity to visit the University of Toulouse (France)
due to an invitation from professor Ahmed Zeriahi, as well as the University of Umea
(Sweden) due to an invitation from professor Urban Cegrell. These visits enriched my
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mathematiacal (and not only mathematical) viewpoint and contributed a lot to the cre-
ation of this thesis. Thus I wish to thank both professors and both Universities for the
hospitality during my stays.
I have also (l)earned a lot from the discussions with my elder and younger colleagues.
So, I cannot forget to thank my brother Żywomir Dinew, and also Grzegorz Kapustka,
Szymon Pliś and Łukasz Kosiński as well as my foreign friends Zhou Zhang nd Pham
Hoang Hiep.
My deepest gratitude however undoubtedly goes to my advisor professor Sławomir
Kołodziej. For all the efforts in my scientific grow-up, for all the patience in the reviews,
for all the valuable comments and for the enormous amount of time - a big hearthy thank
You.
The Author was supported by Polish Ministerial grant N N 201 271135.

2. Basic notions and definitions

2.1. Pluripotential theory.

2.1.1. Currents. Currents are basic tools in pluripotential theory. They can be thought
as a generalization of differential forms. Herebelow we start the discussion of currents
from the very beginning:

Definition 2.1.1 (Current). Let Ω be a domain in Rn. A current of degree p in Ω is
a differential p-form defined in Ω whose coefficients are distributions. The space of all
p-currents in Ω will be denoted by Dp(Ω).

Remark 2.1.2. It is straightforward to generalize this notion to the setting of smooth
manifolds.

A p-current acts on test forms of degree (n− p) (i.e. (n− p)-forms whose coeffients are
C∞0 functions) in the following natural way:
Let

φ =
∑

|J |=n−p

′φJdxJ

be a test form (here J = (j1, j2, · · · , jn−p) is a (n− p)-tuple of indices
dxJ := dxj1 ∧ dxj2 ∧ · · · ∧ dxjn−p and the

′ sign denotes summation over ordered multi-
indices i.e. we assume 1 ≤ j1 < · · · < jn−p ≤ n). If Θ is a current of degree p one can
formally write Θ as

Θ =
∑
|I|=p

′ΘIdxI

with ΘI being distributions. The action of Θ on φ is defined by

Θ(φ) :=
∑

|J |=n−p

′
∑
|I|=p

′ΘI(φJ)dxI ∧ dxJ .

It is obvious that only terms for which I is complementary to J (i.e I∪J = { 1, 2, · · · , n })
contribute to the sum.
It the sequel we shall often define currents simply dy defining their actions on the space
of test forms of corresponding degree.

Remark 2.1.3. All algebraic operations such as summation or multiplication by a func-
tion which are meaningful for distributions can be naturally defined in the setting of
currents.

A basic example is the current of integration:
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Example 2.1.4. Suppose X is a hypersurface in Ω. If φ is a (n− 1)-form with C∞0 (Ω)-
coefficients one defines the current of integration [X] by

[X](φ) =

∫
X

φ.

For example, if X is given by {x = (x1, · · · , xn) ∈ Ω| xn = 0 } then [X] is equal to
δ(x′,0)dxn, where δ(x′,0) is the valuation distribution

δ(x′,0)(ψ) := ψ(x′, 0).

Consider now the complex setting. Since dzi and dz̄j constitute a basis for the space
of 1-forms there is a natural splitting for r-forms in Ω ⊂ Cn

Cp(Ω) =
⊕
p+q=r

Cp,q(Ω),

where each Cp,q(Ω) consists of forms of type

φ =
∑

|I|=p, |J |=q

′φIJ̄dzI ∧ dz̄J ,

(here, as before, dzI := dzi1 ∧ · · · ∧ dzip , dz̄j := dz̄j1 ∧ · · · ∧ dz̄jq and both multiindices are
ordered).
This naturally leads to a definition on complex (p, q)-currents:

Definition 2.1.5. A (p, q)-complex current is a (p, q)-form with complex distributions as
coefficients. The space of complex (p, q)-currents will be denoted by D(p,q)(Ω).

Remark 2.1.6. Again the notion can be defined in a complex manifold setting in the
obvious way.

As an example we consider the current of integration [Z] = [Zn] over a complex hy-
persurface Z = { z = (z1, · · · , zn) ∈ Ω| zn = 0 }. This is a (1, 1)-current equal to
iδ(z′,0)dzn ∧ dz̄n.
From now on throughout the thesis we will consider only complex currents. Therefore
we shall call them simply currents.

Definition 2.1.7 (Real current). A current is called real if Θ = Θ̄.

An obvious necessary condition for (p, q)-current to be real is p = q. In this case the
necessary and sufficient condition for a current Θ to be real is that its coefficients ΘIJ̄

satisfy (as complex distributions) equality

Θ̄IJ̄ = ΘJĪ .

In particular, coefficients ΘIĪ are real distributions.
From now on we will be interested only in currents of type (p, p) and the main focus
will be on real currents.

Example 2.1.8. [Zn] is an example of a real (1, 1)-current. It can be proved that the
current of integration along any complex submanifold of dimension p is a real current of
type (n− p, n− p).

Another special class of currents heavily used in pluripotential theory are the positive
currents.

Definition 2.1.9 (Positive current). A real current T of bidegree (k, k) is called posi-
tive if for any (1, 0)-test forms α1, · · · , αn−k we have

T ∧ iα1 ∧α1 ∧ iα2 ∧α2 ∧ · · · ∧ iαn−k ∧αn−k ≥ 0.
6



In [LG] the following result is proved (it shows in particular that positive currents are
very special class of complex currents):

Proposition 2.1.10. Coefficients of positive currents are complex measures (i.e. distri-
butions of order 0).

Herebelow we give two basic examples of positive currents:

Example 2.1.11. The current [Zn] and, more generally, the current of integration over
arbitrary complex submanifold is a positive current.

The next example shows the fundamental link between plurisubharmonic functions and
positive currents:

Example 2.1.12. If u is a psh function then i∂∂̄u is a positive (1, 1)-current. Here and
below ∂ and ∂̄ are the standard operators representing respectively the (1, 0) and (0, 1) part
of the exterior differentiation operator d. The positivity of i∂∂̄u can be seen as follows:
if we rearrange terms in the wedge product

i∂∂̄u∧ iα1 ∧α1 ∧ iα2 ∧α2 ∧ · · · ∧ iαn−1 ∧αn−1

we shall end up simply with the Levi form of u evaluated at some vector dependent on
α1, · · · , αn−1.

Remark 2.1.13. The example above can be, in a way, reversed. Namely, if T is a positive
(1, 1)-current then it was proved in [LG] that locally one can find a plurisubharmonic
function u such that i∂∂̄u = T .

A very important operation in pluripotential theory is the wedge product of currents.
In general one cannot perform it, since one cannot multiply the coefficients which are
distributions. However, in some special cases one can define the product. If, for example,
at least one of the currents involved has smooth coefficients then the operation is well
defined.
A basic question arises if the wedge product of positive currents is still positive. A
crucial fact in this direction is the following theorem:

Theorem 2.1.14. Let Θ be a positive (p, p)-current and T be a positive (1, 1)-current.
Assume, for simplicity, that one of these currents has smooth coefficients. Then the wedge
product Θ∧T is a positive (p+ 1, p+ 1)-current.

Remark 2.1.15. In the theorem above it is important that one of the currents is of
type (1, 1). Bedford and Taylor [BT1] and, independently, Harvey and Knapp [HK] have
shown that for currents of higher bidegree this theorem is not true. The example below
(taken from [Di4]) shows that the wedge product of two smooth positive (2, 2)-currents in
C4 may fail to be positive.

Before we give the example we need an auxiliary proposition:

Proposition 2.1.16. A current with smooth coefficients α =
∑′

|I|=2,|J |=2 aIJ eI ∧ eJ is
positive if and only if for all s ∈ M sAsT ≥ 0. Here eI = dzi1 ∧ dzi2 , I = (i1, i2), A is
the matrix [aIJ ]I,J , sT means transposed (i.e. column) vector and M is the complex cone
defined by

M := {(s1, s2, s3, s4, s5, s6) ∈ C6| s1s6 + s3s4 = s2s5 } .
(So, A is in a sense positive definite when restricted to vectors from M).
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Proof. Take arbitrary (1, 0)-forms γ =
∑4

j=1 cjdzj and β =
∑4

j=1 bjdzj. We must check
that the coefficient in α∧ iγ ∧ γ ∧ iβ ∧ β is positive. But this is equivalent to α∧ γ ∧ β ∧ γ ∧ β ≥
0, which after elementary operations leads to

Θ(c1, c2, c3, c4, b1, b2, b3, b4)AΘ(c1, c2, c3, c4, b1, b2, b3, b4)
T
≥ 0,

where Θ is the mapping

Θ : C8 3 (z1, z2, z3, z4, w1, w2, w3, w4) 7−→ (z1w2 − z2w1,−z1w3 + z3w1,

, z1w4 − z4w1, z2w3 − z3w2,−z2w4 + z4w2, z3w4 − z4w3) ∈ C6.

Now the claimed result follows from the (rather surprising) observation that Θ(C8) =
M . �

Now we can write down the explicit example:

Example 2.1.17.

ζ =
19

4
dz1 ∧ dz2 ∧ dz1 ∧ dz2 +

19

4
dz3 ∧ dz4 ∧ dz3 ∧ dz4 + dz1 ∧ dz3 ∧ dz1 ∧ dz3+

+dz1 ∧ dz4 ∧ dz1 ∧ dz4 + dz2 ∧ dz3 ∧ dz2 ∧ dz3 + dz2 ∧ dz4 ∧ dz2 ∧ dz4−

−21

4
dz1 ∧ dz2 ∧ dz3 ∧ dz4 −

21

4
dz3 ∧ dz4 ∧ dz1 ∧ dz2,

η =
19

4
dz1 ∧ dz2 ∧ dz1 ∧ dz2 +

19

4
dz3 ∧ dz4 ∧ dz3 ∧ dz4 + dz1 ∧ dz3 ∧ dz1 ∧ dz3+

+dz1 ∧ dz4 ∧ dz1 ∧ dz4 + dz2 ∧ dz3 ∧ dz2 ∧ dz3 + dz2 ∧ dz4 ∧ dz2 ∧ dz4+

+
21

4
dz1 ∧ dz2 ∧ dz3 ∧ dz4 +

21

4
dz3 ∧ dz4 ∧ dz1 ∧ dz2

Then

ζ ∧ η = (2(
19

4
)2 + 4− 2(

21

4
)2)dz1 ∧ dz2 ∧ dz3 ∧ dz4 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4 =

= −6dz1 ∧ dz2 ∧ dz3 ∧ dz4 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4,

so ζ ∧ η is not positive.

Now let us prove that ζ is positive (η goes the same way):

By our criterion and elementary calculations it boils down to checking that

|z2|2 + |z3|2 + |z4|2 + |z5|2 + 5|z6 − z1|2 −
1

4
|z1 + z6|2 ≥ 0

for all z ∈M .

But

|z2|2 + |z3|2 + |z4|2 + |z5|2 + 5|z6 − z1|2 −
1

4
|z1 + z6|2 ≥ |z2|2 + |z3|2 + |z4|2 + |z5|2+

+ |z6 − z1|2 −
1

4
|z1 + z6|2.
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Since this is a homogenous expression, it is no restriction to assume ||z|| = 1 (and still
z ∈M). But then

|z2|2 + |z3|2 + |z4|2 + |z5|2 + |z6 − z1|2 −
1

4
|z1 + z6|2 ≥

≥ 1− 2<z1z6 −
1

4
|z1 + z6|2 ≥ 1− 2|z1z6| −

1

4
|z1 + z6|2 =

= 1− 2|z2z5 − z4z3| −
1

4
|z1 + z6|2 ≥ 1− |z2|2 − |z3|2 − |z4|2 − |z5|2 −

1

4
|z1 + z6|2 =

= |z1|2 + |z6|2 −
1

4
|z1 + z6|2 ≥

1

4
|z1 + z6|2 ≥ 0.

For more informations regarding currents we refer to [Ho], [Kli], [LG] and [K4].

2.1.2. The pluri-fine topology. Since plurisubharmonic functions are not continuous in
general it appears that the standard topology in Euclidean spaces is not well adjusted
to this function class. Therefore one has to define a more subtle topology that takes
into account these discontinuities. Thus, roughly speaking, the pluri-fine topology is the
coarsest topology making all plurisubharmonic functions continuous. Herebelow we give
a formal definition:

Definition 2.1.18 (The pluri-fine topology). The topology in Cn defined by the basis

UB(z,r),φ,a = {w ∈ B(z, r)| φ(z) > a, φ ∈ PSH, a ∈ R },

where B(z, r) is the ball with radius r centered at z, is called pluri-fine topology.

Remark 2.1.19. Usually this topology is defined in a different way and then the definition
above follows as a corollary. For more detailed study of this concept we refer to [Kli].

Observation 2.1.20. Any open set in the Euclidean topology is also open in the pluri-fine
topology.

To see how far is the new topology from the standard one we consider the following
example:

Example 2.1.21. It is known (see, for example, [Kli]) that there exists a plurisubhar-
monic function (in the unit ball, to fix ideas) h 6= −∞ such that { z| h(z) = −∞} is a
dense set. So, U = { z| h(z) > −c } is a pluri-fine open set (non empty for big enough
c > 0), while U has empty Euclidean interior.

Observation 2.1.22. Since topology on manifolds is induced by the topology in local
charts, we can also define the notion of pluri-fine topology on complex manifolds.

To end up our short discussion concerning this notion we prove a crucial fact that we
shall use later on:

Theorem 2.1.23. Any non empty pluri-fine open set has positive Lebesgue measure.

Proof. Of course it is enough to prove the claim for any basis set UB(z,r),φ,a. Suppose
on contrary that the Lebesuge measure of some set UB(z,r),φ,a is zero. Since this set is
assumed to be non empty there exists w ∈ B(z, r), such that φ(w) > a. Fix a small radius
r′ so that B(w, r′) is relatively compact in B(z, r). Therefore, by upper semicontinuity
of φ we obtain that supB(w,r′)φ = c < +∞. But then by the mean value inequality for
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plurisubharmonic functions we obtain ( with λ(A)- the volume of the set A)

a < φ(w) ≤
∫
B(w,r′)

φ(x)dλx/λ(B(w, r′)) ≤

≤ [aλ(B(w, r′) \ UB(z,r),φ,a)]/λ(B(w, r′))+

+ [cλ(B(w, r′) ∩ UB(z,r),φ,a)]/λ(B(w, r′) ≤
≤ a+ c0 = a,

a contradiction. �

2.1.3. The Monge-Ampère operator for bounded plurisubharmonic functions. The Laplace
operator can be regarded as the trace of the complex Hessian of a function. Of course, if
n > 1 the trace does not capture all the information the matrix contains. One needs in
particular all the coefficients of the characteristic polynomial in order to determine the
eigenvalues. This leads naturally to the study of the determinant (and also of all the
intermediate minors) of the complex Hessian. This leads to the definition of the complex
Monge-Ampère operator:

Definition 2.1.24 (The complex Monge-Ampère operator). Given a C2 smooth
function n a domain in Cn the Monge-Ampère operator is defined by

MA(u) := 4nn! det(
∂2u

∂zj∂zk
).

In the language of differential forms, which is better adapted to analysis (and therefore
shall be used throughout) one can write this operator (modulo a constant) as

MA(u) := 4nn! det(
∂2u

∂zj∂zk
)dλ = (dd c u)n,

where, as usual, d = ∂ + ∂ and dc := i(∂ − ∂), so dd c = 2i∂∂, and

(dd c u)n := dd c u∧ · · · ∧ dd c u︸ ︷︷ ︸
n−times

.

The Laplace operator, due to its linearity, can be extended to operate also on non-
smooth functions (by means of distribution theory). This is how the potential theory
has been built. In the case of plurisubharmonic functions one can of course always define
dd c u as a positive (1, 1)-current but defining higher order wedge products is problematic.
It turns out, however, that using the theory of currents one can define Monge-Ampère
operators (as nonnegative Radon measures) for arbitrary locally bounded plurisubhar-
monic functions. More precisely the following is true:

Theorem 2.1.25. ( Bedford-Taylor [BT2],[BT3])
Let u0, u1, · · · , un ∈ PSH ∩ L∞loc. Then:

• for every k ∈ {1, · · · , n} u0dd
cu1 ∧ ddcu2 ∧ · · · ∧ ddcuk is a well defined current.

In particular one can define inductively
ddcu0 ∧ ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcuk := ddc(u0dd

cu1 ∧ ddcu2 ∧ · · · ∧ ddcuk),
• (ddcu0)

n is a nonnegative Radon measure;
• The operator is continuous for monotone (i.e. decreasing or increasing) sequences:
{ukj} ↘ uj, or {ukj} ↗ uj, (ukj ∈ PSH ∩ L∞) then

uk0dd
cuk1 ∧ ddcuk2 ∧ · · · ∧ ddcukl → u0dd

cu1 ∧ ddcu2 ∧ · · · ∧ ddcuk,
where the convergence is in the weak-* topology of currents.
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This shows that for any locally bounded plurisubharmonic function u one can well
define the Monge-Ampère operator acting on it yielding a nonnegative Borel measure
associated to the function u. Of course the definition is coherent with the standard one
if we consider smooth psh functions.
In the theorem above, a convergence with respect to monotone sequences is obtained.
For Laplace operator, in turn, weak convergence of subharmonic functions implies weak
convergence of their Laplacians. Hence it is natural to ask whether also the Monge-
Ampère operator is continuous with respect to weak topology in the class of plurisub-
harmonic functions. Note that by classical properties of plurisubharmonic functions (see,
for example [Ho]) weak convergence in PSH is equivalent to convergence in Lploc for any
p > 1. An example due Cegrell shows, however, that the Monge-Ampère operator is
discontinuous with respect to the weak topology:

Example 2.1.26 ([Ce1], see also [CK1]). There exists a sequence uj of locally bounded
plurisubharmonic functions in C2 converging weakly (hence also in Lploc, ∀p > 1) towards
a locally bounded plurisubharmonic function u such that (dd c uj)

n → µ 6= (dd c u)n for
some measure µ. Furthermore in the unit ball there exist a sequence uj and u with the
same property, such that additionally all the boundary values of uj and u are the same.

Below we state an important result, due to Bedford and Taylor (see [BT4]).

Theorem 2.1.27. Let u, v be locally bounded plurisubharmonic functions in a domain
in Cn. Then

χ{u>v }(dd
c u)n = χ{u>v }(dd

c max(u, v))n.

(χA is the characteristic function of the set A).

Of course, the delicate point is that u and v need not be continuous (so the Borel pluri-
fine open set {u > v } need not be open in the Euclidean topology). As a corollary one
abtains a relatively easy proof of the following result, known as the comparison principle:

Theorem 2.1.28 (Comparison principle [BT2], [BT3]). Let Ω ⊂ Cn be a domain and
u, v ∈ PSH(Ω). Suppose the set {u > v } is relatively compact in Ω. Then∫

{u>v }
(dd c u)n ≤

∫
{u>v }

(dd c v)n.

The comparison priciple is arguably the most important tool in pluripotential theory.
Several versions of it will appear throughout the thesis in different situations.

Proof. We follow an idea from [GZ2]. First, since the set {u > v } is relatively compact,
we can modify u and v near the boundary, (which will not affect the quantities in the
statement) so that u = v near ∂Ω. But then, by Stokes theorem (see [Bl1] for a rigorous
justification) we have∫

Ω

(dd c u)n =

∫
Ω

(dd c v)n =

∫
Ω

(dd c max(u, v))n.

Thus we get∫
{u>v }

(dd c u)n =

∫
{u>v }

(dd c max(u, v))n =

∫
Ω

(dd c max(u, v))n−

−
∫
{u≤v }

(dd c max(u, v))n ≤
∫

Ω

(dd c v)n −
∫
{u<v }

(dd c max(u, v))n =

=

∫
Ω

(dd c v)n −
∫
{u<v }

(dd c v)n =

∫
{u≥v }

(dd c v)n.

11



Now exchanging u with u− ε, ε > 0 we again obtain the relative compactness of the sets
in question, so∫
{u>v }

(dd c u)n = limε→0

∫
{u−ε>v }

(dd c u)n ≤ limε→0

∫
{u−ε≥v }

(dd c v)n =

∫
{u>v }

(dd c v)n.

�

2.1.4. Capacities. As we have seen the Monge-Ampère operator is badly discontinuous
with respect to convergence in L1 topology. Moreover even in the one dimensional case
some sets of Lebesgue measure zero behave (from potential point of view) as if they were
big sets: for example the Newtonian potential is well defined for sets like a segment or
arc in C.
All this serves as evidence that measure theory cannot capture all the information
encoded in the plurisubharmonic functions. One needs a theory that handles with a
priori much smaller sets.
A satisfactory model was already in use in the case of the potential theory in the plane
- the notion of a (Newtonian) capacity. However it relied heavily on the linear structure
of the Laplace operator. Therefore a non-linear counterpart in higher dimensions was
needed. This was accomplished by Bedford and Taylor in [BT3], where the relative
capacity was introduced.
Herebelow we discuss the basic notions of capacities in complex analysis:

Definition 2.1.29 (Relative capacity). Let K ⊂ Ω be a compact subset of an open set
Ω ⊂ Cn . The relative capacity is defined as

cap(K,Ω) := sup{
∫
K

(dd c u)n| u ∈ PSH(Ω), 0 < u < 1}.

This definition can be extended to any Borel subset E of Ω by defining

cap(E,Ω) = cap∗(E,Ω) := sup{cap(K,Ω) | K ⊂ E, Kcompact}.
Remark 2.1.30. Since its introduction in [BT3] the relative capacity turned out to be a
very efficient tool in pluripotential theory, behaving in many situations similarly to the
Newtonian capacity in the planar case.

The explicit computation of this capacity, except in a very special situations, is virtually
impossible. Nevertheless one may introduce a function that, roughly speaking, realizes
the supremum in the definition:

Definition 2.1.31 (Relative plurisubharmonic extremal function). Let K ⊂ Ω be
a compact subset of an open set Ω ⊂ Cn . Define the relative plurisubharmonic extremal
function as

uK,Ω := sup{v(z) | v ∈ PSH(Ω), u ≤ 0, u|K ≤ −1}.
The upper semicontinuous regularization of u

u∗K,Ω(z) := limsupz′→zuK,Ω(z′)

is a psh function.
Before we state the basic results concerning the connections between capacity and
extremal functions we need to define the hyperconvex domains in Cn.

Definition 2.1.32 (Hyperconvex domain). A domain Ω ⊂ Cn is called hyperconvex
if there exists continuous negative plurisubharmonic exhaustion function u - a function,
such that

∀c < 0 : {u ≤ c} b Ω.
12



Remark 2.1.33. All hyperconvex domains are pseudoconvex but not vice versa. One
might consider hyperconvex domains as multidimensional analogues of domains regular
with respect to Laplace operator from the planar case (hovewer domain regular with respect
to Laplace operator in Cn need not be hyperconvex as the example of Hartogs triangle
shows).

Below we list the main results concerning the above notions (see, for example [Kli]):

Theorem 2.1.34. Let Ω ⊂ Cn and K be a compact subset in Ω. Then
(1) K is pluripolar if and only if cap(K,Ω) = 0.
(2) The measure (dd c u∗K,Ω)n is supported in K.
(3) u∗K,Ω = −1 in the interior of K and on ∂K except possibly a pluripolar set.
(4) If Ω is additionally hyperconvex then

cap(K,Ω) =

∫
K

(dd c u∗K,Ω)n =

∫
Ω

−u∗K,Ω(dd c u∗K,Ω)n.

Now we introduce the notion of convergence with respect to (relative) capacity:

Definition 2.1.35 (Convergence with respect to capacity). A sequence of psh
functions uj defined on an open set Ω is said to converge with respect to capcity to a psh
function u if for any compact subset K ⊂ Ω and any ε > 0 we have

limj→∞cap(K ∩ { |uj − u| > ε,Ω }) = 0.

The importance of this notion is due to the following result ([X1]):

Theorem 2.1.36 (Xing’s theorem). Let {u(k)
j }∞j=1, k = 1, · · · , n be sequences of locally

uniformly bounded psh functions on some domainn Ω. Suppose that these sequences
converge with respect to capacity to the functions u(k). Then

dd c u
(1)
j ∧ · · · ∧ dd c u

(n)
j → dd c u(1) ∧ · · · ∧ dd c u(n),

where the convergence is in the weak star topology. So, the Monge-Ampère operator is
continuous with respect to convergence in capacity.

Below we introduce yet another capacity, called the Siciak capcacity. While it is not
straightforwardly related with the Monge-Ampère operator, its definition uses estimates
on (special class of) plurisubharmonic functions. Quite often the connections between
those two capacities serve as a technical tool in pluripotential theory, so one can exploit
the maximum of the developed theory. We need several intermediate definitions before
we discuss the new notion:
First of all, we define a special subset of psh functions defined on the whole Cn . It is
called the Lelong class:

Definition 2.1.37 (Lelong class). The Lelong class of plurisubharmonic functions is
defined by

L(Cn) := {u ∈ PSH(Cn)| lim sup
z→∞

(u(z)− log(1 + |z|)) ≤ Cu <∞},

where the constant Cu depends only on u.

These functions are also known as psh functions with logarithmic growth.
With this class one associates a special extremal function known as Siciak-Zahariuta
global extremal function (below we shall call it the global extremal function for simplicity):

13



Definition 2.1.38 (Global extremal function, [S1], [Za]). Let K be a relatively com-
pact subset in Cn . Define

VK(z) := sup{u(z)| u ∈ PSH(Cn) ∩ L(Cn), u|K ≤ 0}.

This function was introduced (in a different way) by Siciak in [S1]. The definition
above is due to Zahariuta [Za].
It follows from the definition that VK is lower semicontinuous. By upper-regularization

V ∗
K(z) := lim sup

ζ→z
VK(ζ)

we obtain an upper semicontinuous function. It can be proved that V ∗
K is in fact plurisub-

harmonic, unless it is identically +∞.
It is important to know when exactly V ∗

K is finite. A classical result in pluripotential
theory allows classification of such sets ([S2]):

Theorem 2.1.39. Let K be relatively compact subset in Cn . Then the following condi-
tions are equivalent:
(1) K is not a pluripolar set;
(2) V ∗

K is a locally bounded function. Furthermore in this case one has V
∗
K ∈ L(Cn).

If K is pluripolar then V ∗
K ≡ +∞, although it is not true in general that VK ≡ +∞.

It follows that the quantity TR(K) := exp(−sup {V ∗
K(z) | ||z|| ≤ R }) vanishes exactly

on pluripolar sets (for any R > 0). This is how the Siciak capacity is introduced.

Definition 2.1.40 (Siciak capacity). The quantity

T (K) := T1(K)

is called the Siciak capacity of a relatively compact subset K of Cn .

Of course the choice of any other positive number R gives essentially equivalent capac-
ity.
The last result we shall state is the mentioned connection between the two introduced
capacities. These inequalities are due to Alexander and Taylor [AT]. We refer to [K4] for
a short proof.

Theorem 2.1.41 (Alexander-Taylor inequalities). If K ⊂ { z | ||z|| ≤ r }, r < R is
a compact set, then there exist a constant A(r) > 0, dependent only on r, such that

exp(−A(r)cap(K,B(0, R))−1) ≤ TR(K) ≤ exp(−2πcap(K,B(0, R))−1/n),

where B(0, R) denotes the ball of radius R centered at the origin.

For more information regarding capacities, extremal fucntions and their corelations we
refer to [K4] and [Kli].

2.1.5. The Monge-Ampère operator and unbounded functions - Cegrell classes. Recall
that Bedford and Taylor results were proven only for locally bounded plurisubharmonic
functions. So, a question arises whether for any u ∈ PSH a positive Radon measure
MA(u) can be defined in such a way that the definition is coherent with the classical
one for smooth functions and also with the Bedford and Taylor definition in the case of
locally bounded functions. It is also desirable to preserve some of the basic featires of
the operator known from the bounded case. Thus first we should fix the properties of
the Monge-Ampère operator that we want to preserve. Note that any plurisubharmonic
function can be locally approximated by decreasing sequence of smooth plurisubharmonic
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functions. In the bounded case the operator is continuous with respect to decreasing
sequences, so it is natural to impose this kind of continuity in the general case either.
The example below (due to Kiselman) shows that such a definition is impossible for
arbitrary plurisubharmonic functions:

Example 2.1.42 (Kiselman [Ki1]). Let u(z) = (− log |z1|)
1
2 (|z′|2 − 1) where z =

(z1, z
′) ∈ C× Cn−1. Then u is plurisubharmonic near 0, but∫

B(0,R)\L
(ddcu)n = ∞,

where L = {z1 = 0} and R > 0 is arbitrary (small) constant.

This example leads to a natural problem of studying the class of plurisubharmonic
functions for which a consistent definition is possible. Some partial results were known
long ago, for example Sibony and Demailly have shown that the operator is well defined
for functions bounded near the boundary of their domain of definition (see, for example,
[Kli]). Systematical studies, however, started approximately 10 years ago.
The problem can be attacked in two ways: either to consider the problem locally, i.e. to
define the Monge-Ampère operator locally (near a point) or to study functions in a fixed
domain and control the behavior near the boundary of that domain. The first approach
was used by Blocki [Bl4]. Below we state his main characterization result:

Theorem 2.1.43. For any (nonnegative) plurisubharmonic functions the following con-
ditions are equivalent:
(1) u has well defined Monge-Ampère measure, so that convergence of decreasing se-
quences implies weak-* convergence of the measures;

(2) for any sequence of smooth plurisubharmonic functions uj decreasing towards u
the sequence of measures (ddcuj)

n is weakly bounded;
(3) for any sequence of smooth plurisubharmonic functions uj decreasing towards u
the sequences of measures

|uj|n−2−pduj ∧ dcuj ∧(ddcuj)
p ∧ωn−p−1, p = 0, 1, · · · , n− 2

are weakly bounded;
(4) there exists a sequence of smooth plurisubharmonic functions uj decreasing towards

u, such that the sequences of measures

|uj|n−2−pduj ∧ dcuj ∧(ddcuj)
p ∧ωn−p−1, p = 0, 1, · · · , n− 2

are weakly bounded;
(ω := ddc||z||2 = 2

∑n
j=1 dzj ∧ dzj is the canonical Kähler form in Cn).

We denote (temporarily) the class of plurisubharmonic functions satisfying the above
conditions by D, and whenever the domain Ω where we consider our functions is fixed
the class will be denoted by D(Ω).
The second approach (which was actually historically first) was developed by Cegrell
(see [Ce2], [Ce3]). It turns out that the naural domains suitable for such a theory are the
hyperconvex domains. Thus we assume throughout that the domain under consideration
is hyperconvex. Below we list the basic notions in the field:

Definition 2.1.44 (The class E0). The class of negative bounded plurisubharmonic
functions u on Ω, such that limz→ζ u(z) = 0 ∀ζ ∈ ∂Ω and

∫
Ω
(ddcu)n < ∞ is denoted by

E0(Ω).
15



These functions will be used as „basis” from which we shall generate unbounded func-
tions with properly defined Monge-Ampère measure. Here and below if the domain
considered is fixed, we shall simply write E0 := E0(Ω).

Definition 2.1.45 (Cegrell classes). Let

∀p > 0 Ep := {u ∈ PSH(Ω)| ∃uj ∈ E0 : uj ↘ u, j →∞, supj

∫
Ω

(−uj)p(ddcuj)n <∞}.

If additionally the sequence uj can be chosen so that it satisfies supj
∫

Ω
(ddcuj)

n < ∞,
then u is said to belong to Fp. If only supj

∫
Ω
(ddcuj)

n < ∞ holds, then u belongs to the
class F .
Finally if this condition holds only locally, i.e.

∀w ∈ Ω ∃Uw ⊂ Ω, Uw − open ∃gw ∈ F(Ω) : g|Uw = gw|Uw ,

then u belongs to the class E.

It turns out that functions in these classes have properly defined Monge-Ampère mea-
sures (see [Ce2]), which are simply the weak limit of the measures (ddcuj)

n (this limit
exists and is independent of the approximating sequence).

Note that all the defined classes are contained in E . But to say that E is indeed the
largest possible domain of definition of the Monge-Ampère operator, one has to compare
it with the class D(Ω). We recall the fundamental result proven by Blocki:

Theorem 2.1.46 ([Bl4]). Let Ω be hyperconvex domain. Then

E(Ω) = D(Ω).

So, the ”local” and ”global” maximal domain of definition coincide.
The basic properties of functions from Cegrell classes can be found in [Ce3]. Below we
present only these that will be used in our further study.
The first and probably the most important result is the comparison principle:

Theorem 2.1.47 (Comparison principle in Cegrell classes). Let u, v ∈ Ep, p > 0.
Then ∫

{u<v }
(dd c v)n ≤

∫
{u<v }

(dd c u)n.

The conclusion still holds in the classes F and E provided we further assume that the
measure (dd c v)n doesn’t charge pluripolar sets i.e. ∀A ⊂ Ω, A- borelean pluripolar set
we have (dd c v)n(A) = 0 (in the case of the class E we have to make also the assumption
that {u < v } b Ω) .

The comparison principle is a basic tool in pluripotential theory also in the unbounded
case. The result itself was proven (after several weaker versions) by Cegrell in [Ce3]. We
would like to point out the somewhat non natural condition of lack of pluripolar charges.
From measure theoretic point of view a complex hyperplane in Cn is undoubtedly much
”larger” set than Rn ⊂ Cn but our condition allows charging the second set and not the
first one! It turns out, however, that this condition is not artificial as we shall see in our
further studies, which shall justify its significance.
When working with the Monge-Ampère operator, one often has to deal with ”mixed”
measures i.e. terms of the type

dd c u1 ∧ dd c u1 ∧ · · · ∧ dd c un.
16



Here a very useful tool are the inequalities of Hölder type proven by Cegrell in [Ce3] for
the class F .

Theorem 2.1.48. Let u ∈ E0(Ω), v1, · · · , vn ∈ F(Ω). Then the following inequalities
hold∫

Ω

−u(dd c v1)∧(dd c v2)∧ · · · ∧(dd c vn) ≤ (

∫
Ω

−u(dd c v1)
n)

1
n · · · (

∫
Ω

−u(dd c vn)
n)

1
n ;∫

Ω

−u(dd c v1)∧(dd c v2)∧ · · · ∧(dd c vn) ≤

≤ (

∫
Ω

−v1(dd
c v1)

n)
1

n+1 · · · (
∫

Ω

−vn(dd c vn)
n)

1
n+1 (

∫
Ω

−u(dd c u)n)
1

n+1 .

An important object that we shall often deal with is the integral of a function from
the class E1 integrated against its own Monge-Ampère measure.

Definition 2.1.49. Let u ∈ E1(Ω). The term∫
Ω

−u(dd c u)n

will be called E1-energy of the function u.

Proposition 2.1.50. Let u, v ∈ E1(Ω), u ≤ v. Then∫
Ω

−v(dd c v)n ≤
∫

Ω

−u(dd c u)n.

This shows that E1-energy of a function is controlled by E1-energy of any smaller func-
tion in E1.

2.1.6. Additional results. Often in applications instead of the inequalities from Theorem
2.1.48 one needs estimates in the opposite direction. This time, however, we shall estimate
the measures themselves rather than their integrals. The results in this section are taken
from [Di2].
Since the Monge-Ampère operator is simply

MA(u) := 4nn! det(
∂2u

∂zj∂zk
)dλ,

one can use the theory of positive definite matrices in the study of this operator. We refer
to [HJ] for the basic facts on positive definite Hermitian matrices. Now, following [Bl2]
(see also [W1]), one can use concavity properties of such matrices to obtain pointwise
estimates for the Monge-Ampère operator . In particular the following holds:

Theorem 2.1.51. Let u, v be bounded and smooth plurisubharmonic functions such that
(dd c u)n ≥ fdλ, (dd c v)n ≥ gdλ, where f and g are smooth nonnegative functions and
dλ is the Lebesgue measure. Then

(2.1) (dd c u)k ∧(dd c v)n−k ≥ f
k
n g

n−k
n dλ,

(2.2) (dd c(u+ v))n ≥ (f
1
n + g

1
n )ndλ.

In the smooth case these inequalities were proved in [Ga]. In fact these inequalities are
direct consequences of the arithmetic means - geometric means inequality, as can be seen
if we simultaneously diagonalize dd c u and dd c v (as Hermitian forms, not as matrices).
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Since we deal with general plurisubharmonic functions in Cegrell classes, (which are
neither smooth nor even bounded) a question appears whether our inequalities (suitably
understood) hold in this more general situation. In particular, we want to know whether
the following holds:
Let u, v be psh functions in some Cegrell class (so, (dd c u)n and (dd c v)n are well
defined). Let also µ be a positive measure and f, g ∈ L1(dµ). Suppose that (dd c u)n ≥
fdµ, (dd c v)n ≥ gdµ in the sense of measures. Is it true that (again in the sense of
measures)

(2.3) (dd c u)k ∧(dd c v)n−k ≥ f
k
n g

n−k
n dµ,

(2.4) (dd c(u+ v))n ≥ (f
1
n + g

1
n )ndµ.

We start our discussion with an example showing that in general these inequalities are
false.

Example 2.1.52. Let uk = max{ 1
k

log |z1|, k2 log |z2|}, vk = max{ 1
k

log |z2|, k2 log |z1|},
k ∈ R, k > 0. It can be proved that both uk and vk belong to E for any k > 0 (one can
consider, for example, the unit bidisc as the domain where both functions live).
Then

(dd c uk)
2 = (2π)2k

2
δ0, (dd c vk)

2 = (2π)2k

2
δ0

but
dd c uk ∧ dd c vk = (2π)2 1

2k2
δ0,

(dd c(uk + vk))
2 = (2π)2(k +

1

k
)δ0,

where δ0 is the Dirac delta. In particular inequalities (2.3) and (2.4) both fail in this case.

Remark 2.1.53. This example is borrowed from Wiklund’s paper [W2], where these
functions were used in a different context. The computations below are based on the ideas
shown in [R1], [R2].

Proof. First let us compute (dd c uk)
2, ((dd c vk)

2 goes, by symmetry, the same way).
Since uk ∈ E = D, by Błocki’s Theorem 2.1.43 it is enough to compute (dd c uk ,j )

2 with
uk ,j := max{uk,−j}. Now proceeding as in [Bl3] we use the change of the variable

(x, y) −→ (log |z1|, log |z2|)
to confirm that ∫

D2

(dd c uk ,j )
2 = (2π)2

∫
x≤0,y≤0

MA(uk ,j ),

where MA is the real Monge-Ampère operator and uk ,j (x, y) := max{ 1
k
x, k2y, −j}. By

Alexandrov’s theorem (see [Al]) the latter integral is equal to the volume of the gradient
image, i.e.∫

x≤0,y≤0

MA(uk ,j ) = λ(∇uk ,j ({x ≤ 0, y ≤ 0})), ∇uk ,j (E) := ∪w∈E∇uk ,j (w),

where ∇uk ,j (w) := {t ∈ Rn| uk ,j (w)+ < s− w, t >≤ uk ,j (s), ∀s ∈ Dom uk ,j}.
At points where uk ,j is smooth ∇uk ,j (w) is a singleton set (the usual gradient of uk ,j ),
while at non-smooth points usually ∇uk ,j is a larger set. Hence at points where uk ,j is
smooth and equal to 1

k
x we get that ∇uk ,j (w) = {( 1

k
, 0)}. Analogously in the two other

smooth regions uk ,j = k2y and uk ,j = −j we get that ∇uk ,j (w) is equal to {(0, k2)} and
{(0, 0)}, respectively. Note that the Lebesgue measure of the gradient image for this set
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is 0. Let now w is a point where (for example) 1
k
x = k2y > −j. Then one easily computes

the gradient image to be the line segment joining ( 1
k
, 0) and (0, k2). Analogously for the

other points where two of the three functions considered in the maximum coincide the
gradient image is a line segment joining the corresponding endpoints. Finally at the
point(−kj, −j

k3 ) (all three functions coincide), the gradient image will be the full triangle
with vertices ( 1

k
, 0), (0, k2), (0, 0).

The analysis above shows us that the total mass of (dd c uk ,j )
2 over the unit bidisc is

equal to (2π)2 k
2
. Also if we fix a set U ⊂ D2 disjoint from the origin, its logarithmic image

would not contain (−kj, −j
k3 ) for j large, hence the gradient image of that set will have zero

Lebesgue measure. This shows that (dd c uk)
2 is concentrated at the origin and since we

know the total mass we find that (dd c uk)
2 = (2π)2 k

2
δ0. Note that (dd c vk)

2 = (2π)2 k
2
δ0

by symmetry.
We are left to compute dd c uk ∧ dd c vk. But note that

2ddcuk ∧ dd c vk = (dd c(uk + vk))
2 − (dd c uk)

2 − (dd c vk)
2,

so all we need to do is to compute (dd c(uk + vk))
2. Note that

uk + vk = max{(k2 +
1

k
) log |z1|,

1

k
log |z1z2|, (k2 +

1

k
) log |z1|}.

Arguing in the same way the gradient image ofmax{uk + vk, −j} is the (obtuse) rectangle
with vertices (clockwise) (0, k2 + 1

k
), ( 1

k
, 1
k
), (k2 + 1

k
, 0), (0, 0) which has volume k +

1
k2 . Hence as above (dd c(uk + vk))

2 = (2π)2(k + 1
k2 )δ0, and finally dd c uk ∧ dd c vk =

(2π)2 1
2k2 δ0. �

Note that in the above example the Monge-Ampère measures of the functions involved
charge pluripolar sets. It turns out that this is precisely the obstruction for (2.3) and
(2.4) to hold.
Below we state the main result in this section.

Theorem 2.1.54. Let µ be a positive measure in a domain Ω that vanishes on all pluripo-
lar sets. Let u1, u2, · · · , un ∈ PSH(Ω) be plurisubharmonic functions with well defined
Monge-Ampère operator. Let also fi, i = 1, · · · , n be nonnegative functions integrable
with respect to µ. If

(dd c ui)
n ≥ fidµ, ∀i = 1, · · · , n

then
dd c u1 ∧ dd c u2 ∧ · · · ∧ dd c un ≥ (f1f2 · · · fn)

1
ndµ

Remark 2.1.55. We can alternatively prove such a result in the setting of germs of
functions as in [Bl4]. To unify the two possible approaches we shall work locally (in a
small ball). Also, for the sake of brevity, we shall work throughout the note with two
functions u and v instead of the collection of n functions. It will be explained how to get
this general case.

Proof. In [K3] the claimed statement was proved in the case when µ is the Lebesgue
measure and both u and v are continuous. The idea was to approximate u and v by smooth
plurisubharmonic functions and, using the inequality known from the smooth case, to
obtain the same inequality in the limit of the approximation process. The delicate point
is to show good enough convergence of the Monge-Ampère currrents of the approximants
towards the measures associated to u and v.
We shall follow a similar strategy. We shall find appropriate sequences uj, vj for
which Theorem 2.1.54 holds, and prove that they converge in a suitable way to u and v
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respectively ensuring the weak convergence of (dd c uj)
k ∧(dd c vj)

n−k towards (dd c u)k ∧
(dd c v)n−k. To illustrate the difficulties recall that (see example 2.1.26) the weak star
convergence of (dd c uj)

n towards (dd c u)n (even if all the fuctions considered have the
same boundary values) does not imply strong enough convergence (that is convergence in
capacity) of uj towards u. On the other hand, taking for example convolutions would be
enough for the convergence in capacity but the inequality for the approximants is unclear.
For this reason we introduce a special sequence of approximating measures of a fixed
measure µ:
Given a positive Radon measure on a bounded domain Ω ∈ Cn we define its canonical
approximation (see [K1]): Let supp µ be contained in a big cube I. Consider a subdivision
Bk of I into 32kn congruent semi open cubes I j

k , j = 1, · · · , 32kn. It is no loss of generality
to assume µ(∪I j

k∈Bk
∂(I j

k )) = 0 (otherwise we can shift at each stage the boundaries a bit).
Now define

(2.5) µk :=
∑
j

µ(I j
k ∩Ω)

dV (I j
k ∩Ω)

χI j
k
dV,

where χI j
k
is the characteristic function of I j

k . Of course µk is weak* convergent to µ and
every term µk has a density in L∞ with respect to the Lebesgue measure.
Before we proceed we collect some results that we shall use later on:

Theorem 2.1.56. Let Ω be a smoothly bounded strictly pseudoconvex domain in Cn and
let f ∈ C∞(∂Ω) be arbitrary. Let also µ be a positive measure on Ω with finite mass and
compact support. Suppose µ satisfies the following condition for any p > n

n−1
:

There is a constant A = A(p) such that∫
Ω

(−φ)pdµ ≤ A(

∫
Ω

(−φ)p(dd c φ)n)
p

n+p

for any φ ∈ E0. Then:
(1) There exist uk ∈ C(Ω) which solve the Dirichlet problem:

uk ∈ PSH(Ω) ∩ C(Ω)

(dd c uk)
n = µk

uk = f on ∂Ω,

where µk are the canonical approximants of µ.
(2) Define u := (limsupk→∞uk)

∗. Then there is a subsequence of {uk} (which after
renumbering we still denote by {uk}) such that uk → u in L1(dλ).

(3) We have for this sequence that

sup
k

∫
Ω

| − uk|(dd c uk)
n <∞

lim
k→∞

∫
Ω

|u− uk|(dd c uk)
n = 0.

The proof of the first part may be found in [K1]. Other results follow from Theorems
5.1 and 7.7 and Lemmas 5.2, 5.3, 7.8 and 7.9 from [Ce2]. We would like to mention
that the condition that all the functions have the same boundary values can be weak-
ened. If, for example, the boudary values of uk form a sequence decreasing towards a
bounded upper semicontinuous function (which will be the case we shall use later on)
u := (limsupk→∞uk)

∗ still makes perfect sense and, applying line by line the proofs from
[Ce2] we get the finiteness and the convergence of the integrals in this situation too.
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Theorem 2.1.57. Suppose uj ∈ PSH(Ω) ∩ C(Ω) is a sequence that converges to u ∈
PSH(Ω) in L1(dλ,Ω). Suppose also all uk (and hence also u) have the same contin-
uous boundary values, i.e. limz→ζ uj(z) = f(ζ) ∀ζ ∈ ∂Ω. If moreover limk→∞

∫
Ω
|u −

uk|(dd c uk)
n = 0 then uk converges to u in capacity.

This result is contained in the proof of Lemma 2.1 in [CK2]. Again we can carry the
argument from [CK2] also if we let boundary values of uj to decrease (to be precise, since
in the proof there boundary values are used only to ensure relative compactness of sets
{uj < u− a}, a > 0, it is even better when boundary values of uj are bigger than those
of u).
Now we go back to the proof of the theorem. Recall that we consider the case of two
different functions in order to avoid technicalities in the notation.
First we consider the case of bounded u and v.
Note that the claimed inequality is local, hence it suffices to prove it in a (small) ball

Bn , such that the functions u, v are defined in a neighbourhood of it. Let mj, nj be two
sequences of smooth functions on ∂ Bn , decreasing to u|∂ Bn and v|∂ Bn respectively. Let
uj, vj solve 

uj ∈ PSH(Bn) ∩ L∞(Bn)

(dd c uj)
n = (dd c u)nj

uj|∂ Bn = mj
vj ∈ PSH(Bn) ∩ L∞(Bn)

(dd c vj)
n = (dd c v)nj

vj|∂ Bn = nj.

We recall that (dd c u)nj is the canonical approximation of the measure (dd c u)n. By
Theorem 2.1.56 such solutions exist.
Before we proceed we would like to point out some subtleties. If u and v were continu-
ous, the sequences mj, nj would be redundant (since we can work with merely continuous
boundary data as well). This point causes some technical problems in the proof. Also
we need here to use the canonical approximants for the measures on the right hand side
instead of the measures themselves, for the following reason: The Dirichlet problem

uj ∈ PSH(Bn) ∩ L∞(Bn)

(dd c uj)
n = (dd c u)n

uj|∂ Bn = mj

need not have a solution continuous up to the boundary.

Proposition 2.1.58. Let uj, vj be as above. Define u := (lim supj→∞ uj)
∗,

v := (lim supj→∞ vj)
∗. Assume also that uj (resp. vj) tend to u (resp. v) in L1(dλ).

Then we have

(dd c uj)
k ∧(dd c vj)

n−k ⇀ (dd c u)k ∧(dd c v)n−k, ∀k ∈ {1, · · · , n}.

Proof. Note that the inequality∫
Ω

(−φ)pdµ ≤ A(p)(

∫
Ω

(−φ)p(dd c φ)n)
p

n+p , φ ∈ E0(Ω)

holds for any p with a constant A(p) dependent on p, if µ is the Monge-Ampère measure
of a bounded plurisubharmonic function (this follows easily from the theory in [Ce2]). So,
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by Theorem 2.1.56 and the discussion after it, we have (after passing to an appropriate
subsequences, which for the sake of brewity, will also be denoted by uj, vj), that

lim
k→∞

∫
Ω

|u− uk|(dd c uk)
n = 0,

lim
k→∞

∫
Ω

|v − vk|(dd c vk)
n = 0.

Now Theorem 2.1.57 (see also the remark after it) give us that uk, and vk converge to u
and v in capacity.
Now we are almost ready to approximate (dd c u)k ∧(dd c v)n−k by (dd c uj)

k ∧(dd c vj)
n−k.

Indeed Xing’s theorem would give the claimed convergence provided uj and vj are locally
uniformly bounded.
Unfortunately we do not have this information. However this difficulty can be bypassed
by noticing that uj, vj are uniformly bounded in E1 norm (see [Ce2] or [K4]): to show
this take any U b Ω with cap(U,Bn) < ε. Then by Theorem 2.1.48∫

U

(dd c uj)
k ∧(dd c vj)

n−k ≤

≤
∫

Bn

−hU,Ω(dd c(uj + U(0,−mj)))
k ∧(dd c(vj + U(0,−nj)))n−k ≤

≤ (

∫
Bn

−(uj + U(0,−mj))(dd
c(uj + U(0,−mj)))

n)
k

n+1×

× (

∫
Bn

−(vj + U(0,−nj))(dd c(vj + U(0,−nj)))n)
n−k
n+1 (

∫
Bn

−hU,Ω(dd c hU,Ω)n)
1

n+1 ≤

≤ C
n

n+1 cap(U,Ω)
1

n+1 ≤ C
n

n+1 ε
1

n+1

Where C is the uniform E1 bound for uj, vj, hU,Ω is the relative extremal function of U
and we have used the Hölder type inequalities, which is legal since uj + U(0,−mj), vj +
U(0,−vj) belong to E0 (see [Ce3]). The rigorous justification of the uniform E1 bound
for the sequences is a bit technical and will be given in Lemma 2.1.59 below.
Now, again due to uniform E1 bounds and Theorem 2.1.48, we have

cap({uj < −s},Ω) ≤
∫

Ω

−|uj|
s

(dd c h{uj<−s},Ω)n ≤ C

s

with C independent of j and s (in fact much better estimates can be provided but these
are satisfactory for our needs).
Fix s big enough such that cap({uj < −s},Ω) ≤ ε, ∀j. Then for any test function χ
we have

|
∫

Bn

χ((dd c uj)
k ∧(dd c vj)

n−k − (dd c u)k ∧(dd c v)n−k)| ≤

≤ |
∫
{uj≤−s}∪{vj≤−s}

χ((dd c uj)
k ∧(dd c vj)

n−k − (dd c u)k ∧(dd c v)n−k)|+

+ |
∫

Bn

χ((dd c max(uj,−s))k ∧(dd c max(vj,−s))n−k − (dd c u)k ∧(dd c v)n−k)|

But the first term is arbitrarily small by the argument above and the second term tends
to 0 due to Xing’s theorem. So, we obtained the desired result. �
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Lemma 2.1.59. There is an absolute constant C independent of j such that∫
Bn

−(vj + U(0,−nj))(dd c(vj + U(0,−nj)))n < C

Proof. Consider the function gj := U((dd c vj)
n, 0). From [Ce2] we know that gj ∈ E0 and

(dd c gj)
n = (dd c vj)

n. Hence by comparison principle applied to the pair vj, gj +U(0, nj)
we get

vj + U(0,−nj) ≥ gj + U(0, nj) + U(0,−nj).
Let hj := U(0, nj) + U(0,−nj) By inequality from Proposition 2.1.50 we get∫

Bn

−(vj + U(0,−nj))(dd c(vj + U(0,−nj)))n ≤
∫

Bn

−(gj + hj)(dd
c(gj + hj))

n.

The last term can be decomposed into a sum of terms of the type(
n

m

) ∫
Bn

−(gj + hj)(dd
c gj)

m ∧(dd c hj)
n−m, m ∈ {0, · · · , n}.

Again by Cegrell inequalities such terms are controlled from above by some product of∫
Bn −gj(dd c gj)

n and
∫

Bn −hj(dd c hj)
n. But hj are uniformly bounded, while∫

Bn

−gj(dd c gj)
n =

∫
Bn

−gj(dd c vj)
n ≤

∫
Bn

−(vj + U(0,−nj))(dd c vj)
n.

Now U(0,−nj) is uniformly bounded, (dd c vj)
n have uniformly bounded total masses, and

supj
∫

Bn −vj(dd c vj)
n is finite by Theorem 2.1.56. Hence we have obtained the claimed

uniform bound. �

Now we are ready to prove our main inequality in the case of bounded functions:
Consider the canonical approximation as in Theorem 2.1.58. We have that

(dd c u)k ∧(dd c v)n−k = lim
j→∞

(dd c uj)
k ∧(dd c vj)

n−k ≥

lim sup
j→∞

∑
j

χI j
k

(
∫
I j
k
(dd c u)n)

k
n (

∫
I j
k
(dd c v)n)

n−k
n

dV (I j
k )

dV ≥

≥ lim sup
j→∞

∑
j

χI j
k

(
∫
I j
k
fdµ)

k
n (

∫
I j
k
gdµ)

n−k
n

dV (I j
k )

dV ≥

≥ lim sup
j→∞

∑
j

χI j
k

(
∫
I j
k
f

k
n g

n−k
n dµ)

dV (I j
k )

dV = f
k
n g

n−k
n dµ,

where we have used the inequality known from the ”Lebesgue measure case” and the
Hölder inequality.
The case of n different functions instead of just two goes in the same way. The only
difference is that we must use the generalised Hölder inequality (for n functions) instead
of the classical one that we used above.
This result can be generalised to unbounded plurisubharmonic functions. We show
below that our inequality remains true provided µ does not charge pluripolar sets. Since
this is a purely local result we state it in terms of the Cegrell classes in a hyperconvex
domain.
Let u, v ∈ PSH(Ω) ∩ E(Ω) satisfy

(dd c u)n ≥ fdµ, (dd c v)n ≥ gdµ
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assume moreover that µ does not charge pluripolar sets. Then we have the same inequality
as in the bounded case.
Indeed, recall the following known inequality which is a special case of Demailly’s
inequality (see for example [KH]):

(2.6) (dd c max(u,−j))n ≥ χ{u>−j}(dd
c u)n

for every u in E(Ω). Now by monotone convergence and the result in the bounded case
we obtain

(dd c u)k ∧(dd c v)n−k = limj→∞(dd c max(u,−j))k ∧(dd c max(v,−j))n−k ≥

≥ limsupj→∞(χ{u>−j}f)
k
n (χ{v>−j}g)

n−k
n µ

the last term converges to f
k
n g

n−k
n µ (because µ does not charge the pluripolar set

{u = −∞} ∪ {v = −∞}), which proves the claim. �

2.2. Complex geometry. Recall that a complex manifold is an (even dimensional)
manifold endowed with the complex structure, i.e. the transition maps between charts are
holomorphic. We shall restrict our attention to the compact complex manifolds, although
some of the concepts considered will be independent of the compactness assumption. So,
unless converse is explicitly stated, throughout this section a manifold will mean compact
manifold.

2.2.1. Kähler manifolds: definitions and examples. Let us fix a complex manifold X and
let n = dimX. In a local chart there are plenty of smooth positive (1, 1)-forms. By a
partition of unity one can patch together a collection of such local (1, 1)-forms and thus
produce a global smooth positive (1, 1)-form. Such a form induces a Hermitian metric on
the tangent bundle, hence is called Hermitian form.
Locally one may also choose a closed Hermitian form (for example if z = (z1, · · · , zn)
are local coordinates then dd c ||z||2 is such a local form). The question whether a global
closed Hermitian form can be found leads to the concept of Kähler manifolds:

Definition 2.2.1 (Kähler manifold). A complex manifold X is called Kähler if there
exists a global positive and closed (1, 1)-form. Such a form is called Kähler form.

Below we list some basic examples of Kähler manifolds:

Example 2.2.2 (The projective space Pn). Consider the set Pn of all complex lines
passing through 0 in Cn+1. This set can be endowed with the (complex) manifold structure
by using the natural projection from Cn+1 \{ 0 } onto it. In order to define a Kähler form
on Pn we consider the form

dd c log(|Z0|2 + · · ·+ |Zn|2),
where Zi are the coordinates in Cn+1 \ { 0 }. Note that, when restricting to a complex
line through 0, the form is invariant (because the function λ → log|λ| is harmonic on
C \ { 0 }). Thus it descends onto a closed positive (1, 1)-form on Pn. The constructed
form is called Fubini-Study (Kähler) form and is often denoted by ωFS.

Remark 2.2.3. The coordinates Z0, · · · , Zn are called homogeneous coordinates and the
(n+ 1)-tuple [Z0 : · · · : Zn], understood as a class modulo multiplications the coordinates
by a complex number (the same for each coordinate) are convenient ”coordinates” for
working on projective spaces.

Note that the restriction of a closed Hermitian (1, 1)-form onto a complex submanifold
is also closed Hermitian. Hence, we get the following proposition:
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Proposition 2.2.4. Any complex submanifold of a Kähler manifold is Kähler. In partic-
ular, all submanifolds of Pn are Kähler. Such manifolds are called projective or algebraic.

Another standard construction of producing new manifolds form old ones is the Carte-
sian product. It is standard do verify that for Kähler manifolds (X,ωX), (Y, ωY ) the
Cartesian product X × Y can be endowed with the Kähler form ω := π∗XωX + π∗Y ωY ,
where πZ denotes the projection onto Z. Thus we get the following proposition:

Proposition 2.2.5. A Cartesian product of two Kähler manifolds is Kähler.

Another class of examples consists of complex tori:

Example 2.2.6 (Complex torus). Let Λ be a lattice in Cn . Then the Kähler form
with constant coefficients ω :=

∑n
j=1 idzj ∧ dz̄j descends onto the quotient Cn /Λ (which

topologically is a 2n-dimensional torus). So, the quotient carries a Kähler form, hence is
Kähler.

Remark 2.2.7. It can be proved (see [De3] for details) that not every complex torus is
projective (projectivity depends on the way we choose the lattice Λ, although all these
manifolds are homeomorphic to each other). Thus the Kähler manifolds form a strictly
larger class than the projective manifolds.

In order to make the discussion complete we give an example of non-Kähler complex
manifold.

Example 2.2.8 (Hopf surface). Let φ : C2 \ { 0 } 3 z → 2z ∈ C2 \ { 0 }. One can
verify that the group < φ > generated by the automorphism φ (of C2 \ { 0 }) acts properly
discontinuously, hence the quotient C2 \ { 0 } / < φ > has the structure of a complex
manifold. This manifold is called Hopf surface. It can be proved (see, for example, [De3])
that (for topological reasons) the Hopf surface does not admit any Kähler structure.

For more information regarding Kähler geometry we refer to [De3], [GH] and [T].

2.2.2. Algebraic geometry - divisors and bundles. For this section we assume basic knowl-
edge of the theory of several complex variables (holomorphic and meromorphic functions,
analytic sets, etc.) We refer to [GH] for a much more detailed discussion of these topics.
We begin with the notion of a divisor:

Definition 2.2.9 (Divisor). If X is a complex manifold (non necessarily compact or
Kähler), a divisor on X is a locally finite formal linear combination

D =
∑
i

aiVi,

where ai are constants, while Vi are ireducible analytic hypersurfaces in X (here locally
finite means that any point has a neigbourhood such that there are only finite number of
Vi passing through that neighbourhood. The space of all divisors on X form a natural
Abelian group denoted by Div(X ).

Remark 2.2.10. Of course on compact manifolds ”locally finite” is the same as finite.
Note also that hypersurfaces Vi are allowed to be singular. Irreducibility is a technical
assumption made in order to have uniqueness in the formal sum representation. Indeed,
if V is a reducible hypersurface, then V = ∪i=1Wi, where Wi are irreducible components
of V (it is a standard fact that the decomposition is locally finite). And thus one can use
instead of V the formal sum

∑
iWi.

Especially interesting from algebro-geometric point of view are the effective divisors.
25



Definition 2.2.11 (Effective divisor). A divisor D is called effective if

D =
∑
i

aiVi,

with all ai ≥ 0. (by uniqueness of the decomposition the notion is well defined). We
denote effectiveness of a divisor by writing simply D ≥ 0.

Since hypersurfaces are (locally) the zero sets of holomorphic functions, below we
discuss the links between these objects.

Definition 2.2.12 (Order of a function). Let g be a local holomorphic function given
in a neighbourhood of a point p ∈ V ⊂ X. The order ordV ,p(g) of g along V at p is the
largest integer a such that (locally near p) the defining function f of V raised on power
a divides g.

Remark 2.2.13. It is known that in the case of germs of holomorphic functions if u
and v are relatively prime at p the same holds in a neigbourhood of p (see, for example
[GH]). This shows that on the regular part of V the order is locally constant, and if V is
irreducible, it is a constant function in the domain of definition of g intersected with V .
So, we denote it in this case simply by ordV (g).

Observation 2.2.14. With the obvious assumptions on the domains of definition of f
and g we have

ordV (fg) = ordV (f) + ordV (g).

If f is a global meromorphic function (such functions may exist even if X is compact)
then locally one can write f = g

h
with holomorphic relatively prime g and h. If V is

irreducible we define
ordV (f) := ordV (g)− ordV (h).

Definition 2.2.15. For a meromorphic function f we define the divisor (f) by

(f) =
∑
V

ordV (f)V,

(the sum is taken over all irreducible hypersurfaces for which ordV (f) 6= 0). Analogously
we define the divisor of zeroes by

(f)0 =
∑
V

ordV (g)V,

(the definition is independent of the choice of local functions g), and the divisor of poles
by

(f)∞ =
∑
V

ordV (h)V,

(again, this is well defined). Clearly

(f) = (f)0 − (f)∞.

We postpone for a while the discussion of divisors in order to introduce the concept of
a (holomorphic) vector bundle. As we shall see below, there are natural correspondences
between divisors and holomorphic line bundles (i.e. vector bundles of rank 1).
Intuitively a holomorphic vector bundle (of rank r) locally looks like a Cartesian prod-
uct of a piece of the manifold and Cr, and these local Cartesian products are glued
together to produce a smooth structure which in one direction looks like Cr (the fiber or
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the vertical direction), while in the other (horizontal) direction looks like the manifold
under consideration.
Herebelow we give the formal definition:

Definition 2.2.16 (Holomorphic vector bundle). Let X be a complex manifold of
dimension n (non necessarily compact or Kähler, although we shall only be interested in
the compact Kähler case). A holomorphic vector bundle V of rank r is a complex manifold
of dimension n+ r, such that the following holds:
(1) There is a mapping π : V → X, called the bundle projection such that for every

x ∈ X the set π−1(x) (the fiber over x) is a complex linear space of dimension r,
(2) X can be covered by open sets Uα in such a way that π|π−1(Uα) is biholomorphic to

Uα × Cr (such a covering is called local trivialization),
(3) if θα : π|π−1(Uα) → Uα×Cr is the local trivializing biholomorphism then for any x ∈

Uα ⊂ X the mapping θα|π−1(x) : π−1(x) → { x }×Cr is a C-linear isomorphism,
(recall that the linear structure on the fiber π−1(x) is induced from the first point),

(4) for every α, β the map

θαβ = θα ◦ θ−1
β : (Uα ∩ Uβ)× Cr → (Uα ∩ Uβ)× Cr

is of form
(z, ζ) → (z, gα,β(z)(ζ)),

for some complex matrix gα,β(z) that varies holomorphically in z, (here by gα,β(z)(ζ)
we mean simply the action of the matrix gα,β(z) on the vector ζ),

(5) the matrices satisfy the following cocycle relation

gα,β(z)gβ,γ(z)gγ,α(z) = Ir,

for any z ∈ Uα ∩ Uβ ∩ Uγ (Ir is the identity matrix of rank r).

A basic example is the tangent bundle for any complex manifold. One can verify
that the definition above is in fact modelled on this example: the fiber corresponds to
a tangent space at a point, the trivialization corresponds to an atlas of charts and the
diffeomorphisms θα are simply the differentials on the tangent spaces.
Another example is the trivial bundle X × Cr.
In fact the bundle is uniquely defined (mofulo isomorphism) by the collection of the
trivializing sets and the transition matrices gα,β satisfying the cocycle property.
The notion that corresponds to the (global) vector fields in the tangent bundle is the
noton od a section:

Definition 2.2.17 (Section). A (holomorphic) section of a holomorphic vector bundle
V over a manifold X is a mapping s : X → V , such that π ◦ s = idX .

Intuitively, a section is a choice of a vector in each fiber made in a holomorphic way. Of
course, in the case of a trivial bundle this is nothing but a (usual) holomorphic mapping.
Since there are no (nonconstant) holomorphic functions over a compact manifold we see
that nontrivial global sections may not exist: their existence depends on the particular
geometric situation.
Especialy interesting is the case of a line bundle:

Definition 2.2.18 (Line bundle). A (holomorphic) line bundle is a (holomorphic)
vector bundle of rank 1.

In this case instead of holomorphic matrices one has to consider just local holomorphic
functions. By the cocycle condition these functions are nowhere zero.
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As in the general case any collection of local holomorphic functions satisfying the
cocycle property gives rise to a line bundle.
Using this fact one can endow the set of all line bundles (modulo isomorphisms) with
the natural structure of a group by introducing the operations in the following way:
If L and L′ are line bundles given in a local trivialization (one can always shrink the
trivializing sets, so that we can assume these sets are identical for both bundles) by the
holomorphic functions gα,β and g′α,β respectively then we define

L⊗L′ and L∗

as the line bundles given in local trivialization by functions gα,βg′α,β and g
−1
α,β respectively.

The set of all line bundles endowed with these operations is an Abelian group called
the Picard group of X and we denote it by Pic(X).

Remark 2.2.19. the cocycle relation means that { gα,β } form a chain in the Cech co-
homology of the sheaf O∗. Therefore, from cohomological point of view, Pic(X) is iso-
morphic to the cohomology group H1(X,O∗). We shall not use this relation. Instead, we
refer to [De3] or [GH] for a discussion on these topics.

Now we turn back to divisors: Recall that any divisor D with integral coefficients has
a local meromorphic defining function fα in each sufficiently small open coordinate ball
Uα such that fα(z) 6= 0 if z ∈ Uα \ {D } ({D } is the geometrical support of D) and fα
vanishes (or has a pole) of order exactly equal to the coefficients in the expansion of the
divisor. But then the functions fα

fβ
defined on Uα∩Uβ are holomorphic, nowhere vanishing

and satisfy the cocycle property. Hence they define a bundle (called the associated bundle)
which we denote by [D].
It follows that

[D +D′] = [D]⊗ [D′]

[−D] = [D]∗

Therefore the mapping

Div(X) 3 D → [D] ∈ Pic(X)

is a group homomorphism.
It can be proved (see [GH]) that in the special case of projective manifolds this homo-
morphism is actually an isomorphism. Hence in this case there is virtually no difference
between the analysis of divisors and line bundles. In the general case, however, it is not
true that this homomorphism is an epimorphism - for example there are complex tori for
which this is violated.
Below we discuss the central topic in the theory of divisors - the intersection numbers.
Assume, for simplicity, that X is a complex surface (i.e. dimX = 2). Let D and E be
two hypersurfaces which itersect transversally at each x ∈ D ∩ E and moreover both D
and E are smooth near any such x. In such a case we define the intersection number of
the associated divisors (denoted also by D and E) as

D.E := ] {x| x ∈ D ∩ E } .

The notion easily generalizes to general divisors by linearity, provided one can define
it on any two hypersyrfaces.
To achieve this we need the following two important facts which we state without proofs
(which can be found, for example, in [GH]). Let us first recal the notion of homology:
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Definition 2.2.20. Two hypersurfaces C1 and C2 (non necessarily complex) are homol-
ogous if C1 − C2 is a boundary of a cycle of real dimension higher by one unit. More
explicitly C1 and C2 are homologous if there exists a finite set of (piecewise smooth) real
manifolds Di of real dimension dimC1 + 1 = dimC2 + 1, such that

∑
i ∂Di = C1 − C2.

Theorem 2.2.21. For any two hypersurfaces D and E one can find hypersurfaces D′

and E ′ homologous to D and E respectively, such that D′ and E ′ intersect transversally
and are smooth near any intersection point.

Theorem 2.2.22. If D is homologous with D′ and they both satisfy the transversality
assumptions with respect to E then

D.E = D′.E.

These two results show that for any two hypersurfaces it is enough to find transversal
elements in their homology classes and define the intersection with their aid.

Observation 2.2.23. If two divisors D, E have disjoint supports then D.E = 0.

Remark 2.2.24. The defintion would suggest that the intersection number of two effective
divisors is always nonnegative. This is indeed true if in the decomposition the divisors
do not have common irreducible components. In fact on some surfaces there exist curves
C such that C.C < 0. Such curves are often called exceptional divisors and they are an
important object of studies in algebraic geometry - see [GH] and [La] for details.

On a general manifold of dimension n the intersection can be defined in the same way
as a n-linear mapping

Div(X)n 3 (D1, · · · , Dn) → D1. · · · .Dn.

Even more generally, one can define intersections for any varieties provided the dimensions
are choosen in a way that generically the geometrical intersections should be discrete. A
particular important example is an intersection of a divisor with a curve.
For more information on general properties of divisors we refer to [GH] and [La].

2.2.3. Special divisors - ample, nef and big divisors. In the previous subsections we have
defined the notion of an effective divisor. In the quest for more subtle positivity notions
many special classes of divisors were considered. In fact questions regarding (kinds) of
positivity form one of the central topics in modern algebraic geometry. For us, however,
these notions will only serve as an explanation of the geometrical background in the later
charpters. Hence, in order to stick to the main line, we shall only sketch the ideas. For
an extensive discussion of these concepts (furnished by many examples) we refer to [La]
and [GH]. In this subsection we assume that our manifolds are projective - for otherwise
many of the discussed notions (for example the notion of a nef divisor) would have to be
defined in a different (more sophisticated) way.
We begin our discusion with the notion of complete linear system.

Definition 2.2.25 (Complete linear system). Let D be a divisor on a manifold X.
A linear system of D (denoted by |D|) is the set of all effective divisors D′ of the form
D′ = D + (f) for some meromorphic function f .

Below, for the sake of brewity, we shall call such an object a linear system.

Remark 2.2.26. We should emphasize that [D′] = [D] for any such divisors D′ and D.
If D =

∑
aiVi, then alternatively the linear system is detetrmined by all meromorphic

functions g with ordVi
(g) ≥ −ai at each hypersurface Vi.
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We should mention that the size of a linear system (i.e. the amount of its elements)
depends on the manifold X and on the particular choice of D - intuitively the more
positive D is the larger the linear system |D| should be.
This notion is heavily linked with the global (holomorphic) sections of the associated
bundle [D]. Indeed, it is easily seen that an effective divisor D′ can be written as (g) for
a holomorphic section g of the bundle [D′] = [D] (here, by an abusement of notation, by
(g) we mean the divisor cut out by the zeroes of the local holomorphic functions which
define the section g).
Note that a general line bundle may not have any global (nonzero) holomorphic section
at all. From now on, in order to avoid trivialities, we assume thet such a section exists for
the considered bundle [D]. The space of global sections clearly form a (complex) vector
space and, by a classical result in algebraic geometry, this space is always finite dimen-
sional. Thus one can fix a base for the space of global sections consisting of s1, · · · , sk,
where k is the dimension of this space. This is the way we get the notion of the associated
map:

Definition 2.2.27 (Associated map). Let D be a divisor in X. The meromorphic
mapping

φ|D| : X 3 z 99K [s1(z) : · · · : sk(z)] ∈ Pk−1

is called the associated map of the divisor D (or the line bundle [D]). Here [Z1 : · · · :
Zk] denotes the homogeneous coordinates in Pk−1. The symbol 99K is used in order to
emphasize that the mapping is meromorphic (in particular it need not be everywhere
defined).

Observe that the map depends on the particular choice of the basis. Hovewer any two
bases differ merely by an isomorphic transformation, hence images of a manifold by two
such asociated maps generated by two bases differ only by an isomorphism.
Since this is a canonical map into some projective space it is interseting to know when
the following two properties are satisfied:

• under what assumptions φ|D| is actually a holomorphic mapping,
• if so, when φ|D| is an embedding?

This was the motivation for the notion of a (very) ample divisor:

Definition 2.2.28 ((Very) ample divisor). A divisor D is called very ample if the
associated mapping φ|D| is a (holomorphic) embedding. A divisor D is called ample if
mD is very ample for some m ∈ N.

Remark 2.2.29. In order to understand the philosophy of these notions, note that when-
ever s is a section of [D], then sm is a section of [D]m. Thus the number of global sections
of an ample line bundle is not decreasing when we take a multiple of it, and one can hope
that some new sections may emerge, which, intuitively, contain more geometrical infor-
mation and thus lead to better properties of the map φ.

Up to now the definitions were purely geometric. There are however important links
between ampleness and positivity. In fact the role of ample divisors is central in the
classical algebraic geometry. We shall not go into details (instead we refer to [De3], [La]
or [GH]). We just give an example of such a link, which would perhaps enlight a bit the
further developments in this subsection:

Theorem 2.2.30 (Grauert criterion). Let X be a complex surface (i.e. dimX = 2). A
divisor D on X is ample if and only if D2 > 0 and for every effective divisor (alternatively
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for every irreducible complex curve) C one has D.C > 0. In higher dimensions there is
an analogous result (called Nakai criterion).

Next we shall discuss the notion of a nef divisor. These are central in classification
theory in algebraic geometry (see [La]).

Definition 2.2.31 (Nef divisor). Let X be a projective manifold. A divisor D on X is
called nef if for every irreducible curve we have D.C ≥ 0.

Observation 2.2.32. The nef divisors form a convex cone in Div(X).

Remark 2.2.33. Contrary to the intuition an effective divisor may not be nef - for
reasons similar to the ones explained in Remark 2.2.24.

Remark 2.2.34. In dimension two the definition is equivalent to the following one: D
is nef if for any effective divisor C we have D.C ≥ 0. Thus, in a way, the nef cone is
dual to the cone of effective divisors.

Observation 2.2.35. Any ample divisor is nef. Also a limit (in Div(X)) of ample
divisors is nef. In fact, the converse also holds - the closure of the ample cone is equal to
the nef cone.

Another fundamental notion is the one of a big divisor. In order to avoid defining too
many suplementary geometrical notions we give a somewhat desriptive definition:

Definition 2.2.36 (Big divisor). Let D be a divisor in X. For each m ∈ N consider the
linear series generating |mD| and the associated meromorphic map φ|mD|X 99K PN(m).
D is called big if the image of X for some m has maximal dimension (equal to dimX).

Observation 2.2.37. Note that this notion is in a way modelled on the embedding prop-
erty of (very) ample divisors. Unlike this case, however, the mapping is assumed to be
merely meromorphic. In particular there may exist points of indeterminacy (called base
locus), where the mapping is not well-defined.

Let us state two important results concerning big divisors (we refer to [La] for a proof):

Theorem 2.2.38. If D is a nef divisor then it is big in and only if Dn > 0.

The second one is an important theorem of Iitaka which gives us more information
about the mapping from the definition of big divisors:

Theorem 2.2.39 (Iitaka fibration theorem). For a big divisor D the associated map
φ|mD|X 99K PN(m) is birational (that is, bimeromorphic) onto its image for some m ∈ N.

2.2.4. Canonical bundle. As we have observed the notion of a vector bundle was modelled
on a particular case i.e. on the tangent bundle. In fact the tangent bundle has many
properties that makes it worth studying. Perhaps the most important is its naturality
i.e. it is naturally associated to any complex manifold.
Since our main interest is in the line bundles, a question appears whether there is a
similar universal construction of a line bundle working for arbitrary manifolds. Thus we
are led to the notion of a canonical bundle:

Definition 2.2.40 (Canonical bundle). Let X be a complex manifold of dimension n.
The line bundle

KX := ΛnT ∗
X

is called the canonical line bundle. Here T ∗
X denotes the dual of the tangent bundle, and

Λn is the (fiberwise) n-th exterior power.
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Properties of the canonical bundle are important in the classification of manifolds.
Later on we will be interested in the following special cases:

• KX is ample (strictly speaking, the divisor associated to it by the isomorphism
between Div(X) and Pic(X) is ample).

• KX it the trivial line bundle.
• −KX is ample.
• KX is big and/or nef.

2.2.5. Chern classes. Let us fix a divisor D =
∑
aiVi. One can naturally associate with

D a current of integration according to the formula

ηD(φ) :=
∑

ai

∫
Vi

φ,

where φ is a test form of bidegree (n− 1, n− 1). Thus ηD is a (1, 1)-real current (which
is positive if D is effective). By { ηD } we denote the De Rham cohomology class of this
current. It follows from general theory (see [De3]) that this cohomology class can be
represented (on a Kähler manifold) by a smooth (1, 1)-form.

Definition 2.2.41 (First Chern class). Let X be a projective manifold. The first
Chern class is the De Rham cohomology class in H2

DR(X,R) which is represented by the
current associated to the divisor corresponding to the anticanonical line bundle −KX . We
denote the first Chern class of X by c1(X).

We say that the first Chern class is positive (which we denote by c1(X) > 0) if we can
find a Kähler form representing it. If one can find a Kähler representative for −c1(X)
then the Chern class is negative (this is denoted by c1(X) < 0). If c1(X) is the zero
cohomology class then we simply write c1(X) = 0.
In all the cases listed above the Chern class is said to be definite. In fact this is quite
a special situation (recall that the coefficients of a divisor might not be of constant sign)
and in dimension 2 these manifolds are classified (see [T] for more details). Intuitively a
generic manifold will have an indefinite first Chern class.
Actually, there is another more analytic way to construct the first Chern class (see [T])
as a trace of the curvature tensor, however the algebraic definiton is satisfactory for our
needs.

3. The Monge-Ampère operator on Kähler manifolds

3.1. Definitions.

3.1.1. ω-psh functions - basic definitions. Given a compact complex manifold, there are
no nonconstant plurisubharmonic function on it, for any such function will violate the
maximum principle. However the space of positive (1, 1)-currents may be large. Therefore
we introduce a class of functions which are locally plurisubharmonic modulo some smooth
function. A number of different names for this class of functions have appeared in the
literature. They became known as quasiplurisubharmonic or admissible functions. We
shall stick to the name ω-plurisubharmonic (ω-psh for short).
Let X be compact n-dimensional Kähler manifold equipped with fundamental Kähler
form ω given in local coordinates by

ω =
i

2

n∑
k,j=1

gkjdz
k ∧ dzj.

32



We assume that the metric is normalized so that∫
X

ωn = 1.

Definition 3.1.1 (ω-plurisubharmonic functions). The class of ω-plurisubharmonic
functions (ω-psh for short) is defined by

PSH(X,ω) := {φ ∈ L1(X,ω) : ddcφ ≥ −ω, φ ∈ C↑(X)},
where, as usual d = ∂ + ∂, dc = i

2π
(∂ − ∂) and C↑(X) denotes the space of upper semi-

continuous functions.

Later on, for the sake of brevity, we shall often use the handy notation ωφ := ω+dd c φ.
Since the Bedfor-Taylor definition of the complex Monge-Ampère operator is local, one
can also define this operator in the Kähler manifold setting for bounded ω-psh functions:

Definition 3.1.2 (The Monge-Ampère operator). Let φ be a bounded ω-psh function
on an n-dimensional Kähler manifold (X,ω). Then locally ωφ = dd c u, for some local
plurisubharmonic function u and thus the Monge-Ampère operator

ωnφ := ωφ ∧ · · · ∧ωφ︸ ︷︷ ︸
n−times

is locally (hence globally) well defined as a Borel measure.

In the paper [K3] Kołodziej have defined a new capacity on a compact Kähler manifold
which is modelled on the Bedford-Taylor relative capacity from the ’flat’ setting.

Definition 3.1.3 (Relative capacity). The quantity

capω(K) := sup{
∫
K

(ωψ)n|ψ ∈ PSH (X , ω), 0 ≤ ψ ≤ 1}

is called the relative capacity of the (Borelean) set K.

Analogously to the flat case, one can consider the convergence with respect to relative
capacity, first used in the context of Kähler manifolds in [K3].

Definition 3.1.4 ([K3]). We say that a sequence φj ∈ PSH(X,ω) converges in capacity
to φ ∈ PSH(X,ω) if

∀t > 0 capω(|φj − φ| > t) → 0 for j →∞.

We refer to [K3], [GZ1] for the basic properties of the relative capacity and the notion
of convergence with respect to it. Recently Hiep in [Hi] obtained the following character-
ization of convergence in capacity for uniformly bounded functions:

Theorem 3.1.5. Let φj, φ be uniformly bounded ω-psh functions. The following are
equivalent:
(1) φj converges to φ in capacity,
(2) lim supj→∞ φj ≤ φ and

∫
X

(φj − φ)ωn
φj
→ 0.

Below we state an important capacity estimate due to Kołodziej ([K3]):

Theorem 3.1.6. Let φ, ψ ∈ PSH (X , ω). If φ satisfies 0 6 φ 6 C, then for s < C + 1,
we have

Capω({ψ + 2s < φ}) 6
(C + 1

s

)n ∫
{ψ+s<φ}

(ω + dd c ψ)n.
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Proof. Define E(s) := {ψ + s < φ}. Take any ρ ∈ PSH (X , ω) valued in [−1, 0]. Set
V = {ψ < s

C+1
ρ+ (1− s

C+1
)φ− s}. Since −s 6 s

C+1
ρ− s

C+1
φ 6 0, we can easily deduce

the following chain relation of sets:

E(2s) ⊂ V ⊂ E(s).

Then we obtain the following:

(
s

C + 1
)n

∫
E(2s)

(ω +
√
−1∂∂̄ρ)n 6

∫
V

(
s

C + 1
ωρ + (1− s

C + 1
)ωφ)

n

6
∫
V

ωψ
n 6

∫
E(s)

ωψ
n,

where we have used the relation of the sets above and then applied the comparison
principle for the two functions appearing in the definition of the set V .
Finally we can conclude the result from the definition of Capω. �

Below we prove an analogous result with slightly modified parameters. We shall use
this proposition later.

Proposition 3.1.7. Let φ, ψ ∈ PSH (X , ω) satisfy 0 6 φ 6 a, 0 6 ψ 6 a. Then for
every m, n, t > 0 we have the inequality

Capω({ψ + (m+ n)t < φ}) 6
(a+ 1

nt

)n ∫
{ψ+mt<φ}

(ω + ddcψ)n.

Proof. If nt ≥ a+ 1 then the set {ψ+ (m+ n)t < φ} is empty (because of the additional
assumption on ψ) and the proposition holds trivially. If, in turn, nt < a+ 1 then for any
function ρ ∈ PSH (X , ω),−1 ≤ ρ ≤ 0 we have

0 ≤ ntφ

1 + a
− ntρ

a+ 1
≤ nta

a+ 1
+

nt

a+ 1
= nt.

These inequalities give us the set inclusions

{ψ + (m+ n)t < φ} ⊂ {ψ +mt < (1− nt

a+ 1
)φ+

nt

a+ 1
ρ} ⊂ {ψ +mt < φ}.

From now on the reasoning is entirely analogous to the one from Theorem 3.1.6. �

3.1.2. Cegrell classes. As in the flat case, it is desirable to enlarge the domain of definition
of the complex Monge-Ampère operator. Thus one is led to the definition of Cegrell
classes. Below we discuss the analogues of Cegrell classes in Kähler manifold setting. We
refer to [GZ2] and [Di1] for more details.
For every u ∈ PSH(X,ω) (ω+dd c max(u,−j))n is a well defined probability measure.
By [GZ2] the sequence of measures χ{u>−j}(ω + dd c max(u,−j))n is always increasing
and one defines

E(X,ω) := {u ∈ PSH(X,ω) | lim
j→∞

∫
X

χ{u>−j}(ω + dd c max(u,−j))n = 1}.

These functions are a priori unbounded, but the integral assumption ensures that the
Monge-Ampère measure has no mass on {u = −∞}. Then one defines

(ω + dd c u)n := lim
j→∞

χ{u>−j}(ω + dd c max(u,−j))n.

In particular Monge-Ampère measures of functions from E(X,ω) do not charge pluripolar
sets. We refer to [GZ2] for a discussion of that notion.

34



The class E1(X,ω), or more generally Ep(X,ω), p > 0 is defined by

Ep(X,ω) := {φ ∈ E(X , ω) |
∫
X

|φ|pωnφ <∞} .

Since ω-psh functions are upper semicontiunuous, they are bounded from above, hence
one usually considers only negative ω-psh functions from Ep(X,ω), which often comes in
handy in technical details. Note that originally the classes Ep were defined (similarly to
the Cegrell classes in the flat theory) by a sequence of bounded functions φj, φj ↘ φ,
such that supj

∫
X
|φj|pωnφj

< ∞. The results from [GZ2, Di1] have shown that actually
one can take just the sequence φj := max(φ,−j), hence both definitions are coherent.
One can also define ”local” classes in an attempt similar to the one from [Bl4, Bl3].
We define the class D(X , ω) by

D(X , ω) := {φ ∈ PSH(X,ω) | ∀z ∈ X ∃Uz − open, z ∈ Uz, ρ+ φ ∈ D(Uz) },

where ρ is a local potential in Uz for ω and D(Uz) is the maximal domain of definition of
the Monge-Ampère operator in Uz, (see [Bl4, Bl3]).
Note however that the ”local” and global definition yield different classes, as shown in
[GZ2]. This is in sharp contrast with the ”flat” theory.
Define also Da(X , ω) by

Da(X , ω) := {φ ∈ D(X , ω) | ωn
φ(A) = 0, ∀A ⊂ X, A− pluripolar } .

It is known that Da(X , ω) ⊂ E(X , ω), while D(X , ω) * E(X , ω) * D(X , ω).
Note that the terminology in the Cegrell classes, partially due to the mentioned differ-
ences in the ”local” and ”global” settings varies in the literature. In particular the class
D(X , ω) is denoted by E(X , ω) in [HKH] or [Di2]. The class E(X , ω) in turn differs in
some aspects from the class E(Ω) in the ”flat” setting (for example a function in E(Ω)
may have a Monge-Ampère measure that charges points).
Let us state a result that we shall need late on - an inequality for mixed Monge-Ampère
measures. This already follows form our discussion of Theorem 2.1.54, since the measures
we consider do not charge pluripolar sets and the inequality in the cited theorem is local.

Theorem 3.1.8. Let u, v ∈ E(X,ω) be ω-psh functions, µ be a positive measure that
does not charge pluripolar sets and f, g ∈ L1(dµ). If

(ω + dd c u)n ≥ fdµ, (ω + dd c v)n ≥ gdµ

as measures, then

(ω + dd c u)k ∧(ω + dd c v)n−k ≥ f
k
n g

n−k
n dµ, ∀k ∈ {1, · · · , n− 1}.

Corollary 3.1.9. If φ, ψ ∈ E(X , ω) and ωn
φ = ωn

ψ, then for every t ∈ (0, 1) we have

ωntφ+(1−t)ψ = ωn
φ = ωn

ψ .

The next result we shall need is somewhat nonstandard, so although it is similar to
the usual comparison principle, we sketch a proof.

Theorem 3.1.10 (”partial” comparison principle). Suppose T is a (k, k) positive closed
current on X of the form ωφ1 ∧ · · · ∧ωφk

, φj ∈ E(X , ω), where 0 ≤ k ≤ n − 1. Let
furthermore u, v ∈ E(X , ω). Then∫

{u<v }
ωn−kv ∧T ≤

∫
{u<v }

ωn−ku ∧T.
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Proof. Note that in the case k = 0 this is the standard comparison principle in E(X , ω),
which was shown in Theorem 1.5 in[GZ2], (historically the bounded case was first shown
in [K3]). Note also that it is enough to get the statement for n−k = 1, since all the other
cases can be done by iteration of the ”n− k = 1” argument. So, we assume n− k = 1.
In the class Da(X , ω) the claimed result was proven in [HKH]. Our case is indeed not
much different.
Basically one can repeat the argument from the Theorem 1.5 in [GZ2], provided one
knows that for bounded u, v

χ{u<v }ωv ∧T = χ{u<v }ωmax(u, v) ∧T,
corresponding to equality (1) in the proof of Guedj and Zeriahi. Now one can proceed in
the following way: define the canonical approximants for φ1, · · · , φn−1 by

φ(j)
s := max(φs,−j).

Let T (j) := ω
φ

(j)
1
,∧ · · · ∧ω

φ
(j)
n−1
. All the functions appearing in the wedge products belong

to Da(X , ω), hence [HKH] applies. So, for u, v bounded we have∫
{u<v }

ωv ∧T (j) ≤
∫
{u<v }

ωu ∧T (j).

By propreties of E(X , ω) proven in [GZ2] for bounded u, v when passing to the limit
with j →∞ one gets ∫

{u<v }
ωv ∧T ≤

∫
{u<v }

ωu ∧T.

Now the step from bounded u, v to general u, v can be done exactly as in Theorem 1.5
in [GZ2].

�

3.2. The Monge-Ampère equation.

3.2.1. Calabi-Yau theorem and generalizations. The Monge-Ampère operator appears in
complex geometry in the formula for the Ricci curvature of a Kähler metric:

Definition 3.2.1 (Ricci curvature). If ω = i
2

∑n
k,j=1 gkjdz

k ∧ dzj is a Kähler form
(with associated metric (gkj)) we define its Ricci curvature form Ricω by

Ricω := −i∂∂̄log(det(gkj)).

Observe that this definition a priori depends on the choice of the local coordinate
system. However under any other coordinates the quantity ωn will differ by the square
of the modulus of the Jacobian of the (holomorphic) change of variables. Since log(|F |2)
is a pluriharmonic function for F holomorphic, it turns out that the so defined form is
independent of the local coordinate system and hence defines a global (1, 1)-form.
Actually one can say more: the form Ricω belongs to the first Chern class c1(X) (see,
for example [GH] or [T]). Due to the geometers’ interest in the Ricci curvature it became
important to study more thoroughly the possible elements of c1(X) which are ”generated”
as Ricci forms of some metric. This was the starting point of the Calabi conjecture:
If we fix a (positive) cohomology class [ω] ∈ H1,1(X, R) on a compact Kähler manifold

(X,ω) and a form θ ∈ c1(X) is it always possible to find a repersentative η ∈ [ω] which
is positive (i.e. a Kähler) and its Ricci curvature satisifes Ricη = θ?
This conjecture would for example imply that on any Kähler manifold X with c1(X) =

0 one can find Ricci-flat Kähler metric on (that is η, such that Ricη = 0) within any Kähler
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class in X. This, in turn, implies a lot of geometrical and even topological information
on X (see, for example, [T] for details).
By the so called ∂∂̄ lemma (see [De2] or [T]) any form cohomologous to ω is of type

ω + i∂∂̄u for some real function u. Thus we get the two equations

Ricω+∂∂̄u = −i∂∂̄log((ω + ∂∂̄u)n) = θ + i∂∂̄f,

Ricω = −i∂∂̄log((ω)n) = θ

(by an abuse of notation here we denote the determinant of (gkj̄) by ωn). By extracting
the second one from the first one obtains

(3.1) −i∂∂̄log((ω + ∂∂̄u)n

ωn
) = i∂∂̄f.

Since on a compact Kähler manifold there are no non constant pluriharmonic functions
we obtain from 3.1 that

log(
(ω + ∂∂̄u)n

ωn
) = −f + c,

for some constant c. By rewriting the above one gets the Monge-Ampère equation

(ω + ∂∂̄u)n = e−f+cωn.

Thus the solution of the Calabi conjecture boils down to solving a Monge-Ampère equa-
tion. This was done by Yau in his seminal paper [Y]:

Theorem 3.2.2 (The Calabi-Yau theorem). The Monge-Ampère equation arising from
3.1 has a smooth solution whenever the function f is smooth.

The proof of the Calabi-Yau theorem is beyond the scope of this note. We shall only
briefly sketch the main ideas.
The proof uses the so called continuity method. One starts with data on the right
hand side for which the equation is solvable (for example, if f ≡ 1 then clearly φ = 0
is a solution), and then tries to perturb the data via continuous path towards the fixed
Dirichlet problem (one may take the ”data” path t→ f(t) = tf +(1− t)). The goal is to
show that the equation is solvable for all t ∈ [0, 1]. It is enough to prove that the set of
those t ∈ [0, 1] for which (ω + ∂∂̄ut)

n = f(t)ωn is solvable is both open and closed. For
the openness one can argue by a kind of implicit function theorem in the Banach space
C∞(X) (see [T]) to show that whenever the equation is solvable for t0 it is also solvable
for times close enough to t0.
The hard part is the closedness. It is enough to show that having a solution for times

ti with limi→∞ ti = t0 one can also solve the problem for t0. To show this one can use
Arcela-Ascoli theorem for the sequence uti (viewed as a sequence in the Banach space
C2,α(X)) provided one can obtain a priori C0, C1, C2 and C2,α estimates for the solutions.
This is the technical heart of the Yau’s proof in [Y].
Historically the C3 estimates (instead of C2,α) were used and these were known for
some time (we refer to [Si1] for more details on the history of the problem). The C2

estimate turned out to be independent of the C1 one (which is a very rare situation in
nonlinear PDE theory) and thus the proof is reduced to the C0 and C2 estimates. While
the proof of C2 a priori estimate can be handled by PDE techniques, the C0 estimate
(surprisingly) turned out to be the most difficult one. In his original proof Yau [Y] used
the Moser iteration technique coupled with reverse Hölder inequalities and Sobolev type
estimates to obtain the result.
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The methods used were rather restrictive and soon new geometric problems (connected,
for example, with the limiting behaviour of the equation if we let the Kähler form to vary)
became intractable.
At this stage Kołodziej, using pluripotential methods ([K2]) proved the C0 estimate
for the weak solutions of equation

(3.2) (ω + dd c φ)n = Fωn, where F ≥ 0, F ∈ Lp(ωn), p > 1,

∫
X

Fωn =

∫
X

ωn.

The main advantage of this proof over Yau’s is that the estimate is independent neither
on infXF nor on the smoothness of this function.
Below we sketch the main ideas of Kołodziej’s proof. It hinges on several facts that
allow to reduce the a priori estimate to a local problem from flat theory.
First, if u is a negative ω-psh function satisfying supX u = 0, then

∫
X
uω is always

finite and can be bounded from below by −c1 for some constant c1 depending only on
(X,ω) (in the sequel we enumerate the constants ci in order to distinguish them). Thus
in any coordinate chart U one has

∫
U
uωn > −c1. So, for any finite open cover (that is,

a finite collection of charts Vi, i = 1, · · · , N, such that ∪Ni=1Vi = X) one has

(3.3) supVi
u > −c2,

with a constant c2 dependent on X and the covering but independent of u.
The second fact we need is that for any point z ∈ X we can find in a neigbourhood a
potential η for the Kähler metric which has a (strict) minimum at z. This is done in the
following way:
In local coordinates in a ball B

′′
centered at z any potential ρ of the form ω is a strictly

plurisubharmonic smooth function and can be expanded as

ρ(z + h) = ρ(z) + 2<(
n∑
j=1

ajhj +
n∑

j,k=1

bjkhjhk) +
n∑

j,k=1

cjk̄hjh̄k + o(|h|2)

= <P (h) +H(h) + o(|h|2),

where P is a complex polynomial in h and H is the complex Hessian at z.
Proceeding exactly as in [K2] (Lemma 2.3.1) η := ρ−<P (·−z) is also a local potential
for ω, with the additional property that η has a strict local miniumum at z (we use at
this point that H is strictly positive definite). This means that for smaller balls B and B′

satisfying B b B′ b B” if B is sufficiently small one has inf∂B′ η > supB η + c3 for some
positive constant c3 > 0 dependent of the positivity of ω and the modulus of continuity
of η.
So, by compactness one may take finite collection of such triples of balls Bz b B′

z b B”
z ,

such that Bz form an open covering.
We fix a point c ∈ X where the function u obtains a minimum (recall that we prove an
a priori inequality, so we assume u is continuous - in such a case the minimum is attained).
We choose one of the coordinate balls B (we drop, for the sake of notational ease, the
subscript z in the sequel) such that c ∈ B. Fix also a ball B∗ such that B′ b B∗ b B”.
Then supB̄u = u(x) > −c2 for some x ∈ B̄ b B′, and by construction the function
v := u+ η satisfies the following:

v is plurisubharmonic in B”,(3.4)

v(x) > −c4 for some c4 > 0 depending only on X,(3.5)

v(c) ≤ inf∂B′v − c5 > 0 for some c5 depending only on X.(3.6)
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Thus the proof is reduced to the following local result (below we make the notation
suggestive to make the correspondences between notions clear):
Let B” be a strictly pseudoconvex domain in Cn . Let also the negative plurisubharmonic
function v satisfies (dd c v)n = fdV for some f 6= 0, f ∈ Lp(dV ), p > 1. Assume
moreover that for some point x we have v(x) > −c4 and the sets U(s) := { z| v(z) <
−s }∩B′ are nonempty and relatively compact in the domain B′ b B∗ b B” for any s in
an interval of lenght at least c5. Then

−infB′v ≤ C(c4, c5, B
′, B∗, B”, p, ||f ||p),

for some constant C dependent only on the mentioned quantities.
This bound gives us uniform esitmate of v and hence also of u onX. For the (technically
involved) proof of this local fact we refer to [K2], Lemma 2.3.1. We only mention that
the proof depends crucially on the following Lemma:

Lemma 3.2.3 ([K2]). If f ≥ 0, f ∈ Lp(dV,B”), p > 1 then there exists an increasing
function Q : (0, ∞) → (0, ∞) satisfying
(1)

∫ ∞
1

(yQ1/n(y))−1dy < +∞,
(2) there exists a constant A, dependent only on B”, n and Q, such that for each
compact K ⊂ B”∫

K

fdV ≤ Acap(K,B”)][Q(cap(K,B”)−1/n)]−1.

This estimate, roughly speaking, says that the Monge-Ampère measure of v decays for
small compacts K a bit faster than the capacity. The rate of the decay is measured by
the function Q. It was in fact proved in [K2] that one may take Q(t) = cmt

m for any
positive exponent m (the constant cm increases with m). For our later reference we define
an auxiliary function

(3.7) κ(s) := A1/n[

∫ ∞

s−1/n

y−1Q−1/n(y)dy +Q−1/n(s−1/n)].

It is easy to compute that with the choice of Q as above one gets κ(t) = cm,nt
m
n2 .

After [K2] several other proofs of the L∞ estimate have appeared (see, for example
[K3], [K4] and [EGZ]). In all these newer proofs instead of localizing the estimate one
works globally on the manifold X. To this end instead of the capacity cap(K,B”) one
has to work with the relative capacity capω. It can be proved however that the analogue
of Lemma 3.2.3 also holds. We have chosen to present the original argument since we
shall need some of the introduced concepts later on.
The next step is of course the quest for a better regularity of the weak solutions. In
[K2] it was shown that any solution of (3.2) is in fact continuous. We postpone the proof
of this fact to the next subsection where this will be treated in a more general situation.

3.2.2. The big form case. When analyzing various problems in geometry, one often has
to let the Kähler class ω vary. Especially interesting are the limiting situations, i.e. the
cases when a family a Kähler forms tends to a form in a non-Kähler class. A typical
example is the limiting behavior at infinity of the Kähler-Ricci flow when the canonical
divisor is big and nef. One of the situations that may appear involves the so called big
forms:

Definition 3.2.4 (Big form). A closed semi-positive (1, 1)-form ω on a compact Kähler
manifold X is called big if ∫

X

ωn > 0.
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The difference with the kählerness condition is the assumption of semi-postivity instead
of strict positivity. Let us give an example in order to emphasize the differences:

Example 3.2.5. Let X and Y be complex manifolds and let π : X → Y be a holomorphic
map which is generically finite-to-one i.e. the preimage of a generic point form Y is finite.
If ω is a Kähler form on Y then π∗ω is a semi-positive form on X satisfying additionally∫
X
π∗ωn > 0, but it may not be Kähler. A local example of this can be obtained by taking

π : C2 3 (z1, z2) → (z1, z
2
2) ∈ C2. Then π∗ dd c ||z||2 is not strictly positive on the line

{ z2 = 0 }.

Note that analogously to the Kähler case one can define ω-psh functions in the big
setting. It is interesting to consider the corresponding Monge-Ampère equation in the
big setting:

(3.8) (ω + dd c φ)n = Fωn, φ ∈ PSH (X , ω), F ∈ Lp(ωn), p > 1.

In [EGZ] and [Z] (see also [BGZ]) it was shown that analgously to the Kähler case one
has the L∞ estimate:

Theorem 3.2.6. Let ω be a big form on a compact Kähler manifold and let φ ∈ PSH (X , ω)
solve the equation

(ω + dd c φ)n = Fωn, supXφ = 0, F ∈ Lp(ωn), p > 1.

Then there exists a constant C depending only on X, ω, p, ||F ||p such that

||φ||∞ ≤ C.

In the Kähler case, as we have already mentioned, the continuity of such a solution was
shown in [K2]. Therefore it is natural to expect also a continuity result in the big form
setting. The problem turned out to be a highly nontrivial one and is still open except in
a special situation which we shall now describe.

Theorem 3.2.7. Let (X, ωX), (Z, ωZ) be two Kähler manifolds and F : X → Z be a
holomorphic mapping with the property that the image of X is locally birational to X.
Then ω := F ∗ωZ is a big form on X and the solution on the Monge-Ampère equation
(3.8) is continuous.

Remark 3.2.8. In geometrical applications the manifold Z is usually the projective space
PN for some N ∈ N. Therefore we shall give the proof in the case (Z, ωZ) is simply the
projective space equipped with the Fubini-Study metric, but the general case goes the same
way. Arguments used, however, heavily rely on [K2] and at some places we just follow it
line by line.

This theorem was obtained by Zhang in [Z]. The proof there is hovewer a bit too
sketchy and the details were furnished in [DZ]. Here we follow the exposition given in
the latter paper.
First of all we recall the geometrical background. Let X be the base closed Kähler
manifold we work on, and F : X → PN be a map with the property that the image F (X)
has the same dimension and F is itself locally birational i.e. for every small enough
neighbourhood U of any point on F (X), each component of F−1(U) is birational to U .
A typical global example of this situation is obtained as follows: if X carries a big line
bundle L, the linear series corresponding to Ln generate (for sufficiently big n ∈ N)
a birational morphism into PN with the claimed properties. Note hovewer that local
and global birationality are different notions (see the example below) and if one has to
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deal with the global birationality one has to impose some additional assumptions for the
argument to go through.
Consider now Y := F (X). By the Proper Mapping Theorem Y is a (singular in general)
subvariety in PN . It is also clear that Y is irreducible and locally irreducible variety (the
latter follows from the local birationality). Recall that an upper semicontinuous function
u on a singular variety D is called weakly plurisubharmonic if for every holomorphic disc
f : ∆ → D the function u ◦ f is a subharmonic function (see [FN]). In that paper it is
proved (in fact in a much more general situation of Stein spaces) that any such function
u can be extended locally to the ambient space to a classical plurisubharmonic function
i.e. for every x ∈ Y there exists a small Euclidean ball B in PN , centered at x and a
function v ∈ PSH(B), such that v|B∩Y = u.
Suppose now that φ is a positive discontinuous solution of the Monge-Ampere equation
in question and let d := sup(φ − φ∗) > 0, where φ∗ denotes the lower semicontinuous
regularization of φ. Note that the supremum is attained, and if E is the closed set
{φ− φ∗ = d}, there exists a point x0 such that φ(x0) = minE φ. Positivity is a technical
assumption that can always be achieved by adding appropriate constant since we already
know that φ is bounded.
By assumption there exist analytic sets Z ⊂ X and W ⊂ Y = F (X) such that

F |X\Z → Y \W is a biholomorphism and moreover S := {ωn = 0} ⊂ Z. Note that in
the general case of a big form S need not be contained in an analytic set - it may well
happen that S is open in X.
Two possibilities might take place
(1) x0 ∈ X \ S. In this case ω is strictly positive in a small ball centered at x0 and
repeating the argument from Section 2.4 in [K2] we obtain a contradiction.

(2) x0 ∈ S. Then we shall produce a domain V (not contained in a chart in general)
and a potential θ of ω in V with the property that inf∂V θ > θ(x0) + b, where b is
a positive constant.

Consider F (x0) = z and a neighbourhood U of z in PN , such that its preimages are
birational to it. Choose the one x0 sits in. For the rest of the argument we restrict
ourselves to F |F−1(U)3x0

→ U . Consider the pushforward function

F∗φ(z) :=

{
φ(w), if z ∈ Y \W,w ∈ X \ Z, F (w) = z

lim supX\Z3ζ→z F∗φ(ζ) ifz ∈ W

and a local potential η for the Kähler form on U .
Claim: η + F∗φ is weakly subharmonic on Y .
Proof: Weak subharmonicity is a local property, hence it is enough to check it in a
neighbourhood of any point on Y . For regular points of Y this is evident. However at
singularities of Y one might a priori run into trouble as the example of a double point
shows. Indeed, consider the following (classical) local example:
Let

F : C 3 t→ (t2 − 1, t(t2 − 1)) ∈ C2

The image F (C) sits in the variety {(z1, z2) ∈ C2|z2
1 + z3

1 = z3
2}. Observe that F is a

bijection onto its image, except for the points 1 and −1 being mapped to (0, 0). But
then it is clear that the pushforward of a subharmonic function v on C cannot be weakly
subharmonic on the image if v(1) 6= v(−1). Note that F is not locally birational though.
Observe that local birationality forces the analytic set Y to be locally irreducible. Then
there is a classical theorem (see [De1], Theorem 1.7) stating that on a locally irreducible
variety Y any locally bounded plurisubharmonic function w defined on Reg Y (the regular
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part of Y ) can be extended via limsup technique v(z) := lim supζ→z, ζ∈Reg Y v(ζ) to a weak
plurisubharmonic function. Moreover, it follows from the proof that for any s ∈ Y and
any birational modification G : Y

′ → Y of Y the pulled back function G∗w is constant
on the fiber G−1(s).
Now, if ωPN is the Kähler metric which defines ω (i.e. ω = F ∗ωPN ), fix ρ - a local
potential of ωPN in a neighborhood of z in Pn (we can assume without loss of generality
that this neighborhood coincides with U). We modify ρ exactly as in the proof of L∞

estimate in the previous subsection. So, we can assume that ρ has at z strict local
minimum.
By the classical Fornaess-Narasimhan theorem ([FN], Theorem 5.3.1) we find a small
euclidean ball B

′
in Pn centered at z and a function ψ ∈ PSH(B

′
), such that ψ|Y ∩B′ =

η + φ. On a neighbourhood of a slightly smaller ball B (everything is contained in B
′

and U) ψ can be approximated by a sequence of smooth plurisubharmonic functions ψj
decreasing towards it. Again (decreasing a bit B if necessary) one can get inf∂B η >
η(z) + b for some positive constant b. Now we pull back the ball and the regularizations:
let V := F−1(B

′ ∩ Y ) and uj := ψj(F (w)) ( uj are assumed to be defined only on small
neighbourhood of V ). Of course these are continuous plurisubharmonic functions on V
which decrease towards u := η ◦ F + F ∗(F∗φ) = η ◦ F + φ (the equality is due to the
fact that φ has to be constant on each fiber). Note that V need not be an Euclidean
domain anymore (i.e. it need not be contained in a coordinate chart), nevertheless η ◦ F
is a global potential of ω on this set. This is the essential difference between this special
situation and the general case. Next we state a lemma which is essentially contained in
[K2] (Section 2.4). We include the proof for the sake of completeness.

Lemma 3.2.9. There exist a0 > 0, t > 1 such that the sets

W (j, c) := {tu+ d− a0 + c < uj}
are non-empty and relatively compact in V for every constant c contained in an interval
independent of j > j0.

Proof. Note that E(0) := {u − u∗ = d} ∩ V = E ∩ V , since the potential is continuous.
Also the sets E(a) := E := {u− u∗ ≥ d− a} ∩ V are closed and decrease towards E(0).
Hence if c(a) := φ(x0)−minEa φ we have that lim supa→0+ c(a) ≤ 0, for othrwise we would
get a contradiction with the definition of d. Hence

c(a) <
1

3
b

for 0 < a < a0 < min(1
3
b, d). Let A := u(x0). Note that A > d, since the potential is

greater than 0 at x0, and φ as a globally positive function has to be greater than d at x0.
One can choose t > 1, such that it satisfies

(t− 1)(A− d) < a0 < (t− 1)(A− d+
2

3
b).

Now, if y ∈ ∂V ∩ E(a0) one gets

u∗(y) ≥ η(F (x0)) + b+ F ∗F∗φ(x0) ≥ A− d+
2

3
b.

Hence u(y) ≤ u∗(y) + d < tu∗(y) + d − a0. Note that this inequality extends to a
neighborhood of ∂V ∩ E(a0). Taking another neighborhood relatively compact in the
first one and applying Hartogs type argument one obtains

uj < tu(y) + d− a0, ∀j > j1.
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For the rest part of ∂V the same inequality holds if we take big enough j1 and the proof
is even simpler, since u−u∗ is less than d−a0 there. This proves the relative compactness
on W (j, c) in V .
Note that from the left inequality defining t one gets (t− 1)u∗(x0) < a0, hence

tu∗(x0) < u(x0)− d− a1 + a0 < uj(x0)− d− a1 + a0

for some constant a1 > 0. This implies that the sets W (j, c), c ∈ (0, a1) contain some
points near x0, hence they are non empty. �

Now, by Lemma 2.3.1 from [K2] (one can verify that despite the fact that V can be non
Euclidean the argument still goes through) one can bound the capacity cap(W (j, a1), V )
from below by an uniform positive constant. On the other handW (j, a1) ⊂ {u+(d−a0 +
a1) < uj} and this contradicts the fact that the decreasing sequence uj has to converge
towards u in capacity. This proves that d = 0, hence φ is continuous.

Remark 3.2.10. As we have seen the argument cannot be applied in the case of a (glob-
ally) birational map. In this case some additional assumptions are needed to assure that
the pushforward is plurisubharmonic. A satisfactory additional assumption is that the
fibers in the preimage are connected. Then the function has to be constant on any non-
trivial connected fiber and this is enough to push it forward onto the image.

3.2.3. The Monge-Ampère equation in Cegrell classes - existence. The existence results
for the Dirichlet problem in Cegrell classes were obtained by Guedj and Zeriahi in [GZ2].
Their proof is modelled on Cegrell’s argument in the flat case [Ce2], [Ce3]. Let us state
Guedj and Zeriahi’s theorem:

Theorem 3.2.11. Suppose µ is aprobability measure that does not charge pluripolar set.
Then there exists φ ∈ E(X , ω) such that

(ω + ddcφ)n = µ.

Below we sketch the main ideas of the proof of this important result (see [GZ2] for the
details).
The proof can be divided into two independent parts.
In the first part we prove that a probabilistic measure µ has a potential in E1(X,ω)
if E1(X,ω) ⊂ L1(µ) (the converse implication also holds). To show this the measure µ
is approximated (in the weak sense) by a special sequence of smooth strictly positive
probabilistic measures µj. This was done in [GZ2] by convoluting µ locally with smooth
kernels and adding a small multiple of the volume form to obtain strict positivity. For
each of the approximants µj one can find (by the Calabi-Yau theorem) a smooth potential
φj normalized by, say, supXφj = −1. Taking subsequence if necessary we find φ ∈
PSH (X , ω) such that φj → φ in L1(ωn) and supXφ = −1. The integrability assumption
guarantees that in fact φ ∈ E1(X,ω).
The most delicate point of the proof is to show that

(3.9) limj→∞

∫
X

|φj − φ|dµj = 0.

For this the Authors in [GZ2] rely heavily on the special choice of the approximating
sequence. Having proven the fact above, we note that it is very similar to Hiep’s criterion
for convergence in capacity in the bounded case (Theorem 3.1.5), and indeed (3.9) is
sufficient to show that

ωnφ = µ,

which finishes the sketch of the first part of the proof.
43



The second ingredient is to solve the Dirichlet problem for a general probabilistic mea-
sure vanishing on pluripolar sets. For such a measure µ, by applying Cegrell decomposi-
tion type argument (see Lemma 4.5 in [GZ2]) we find a function u ∈ PSH (X , ω)∩L∞(X,ω)
and a function f ≥ 0, f ∈ L1(ωnu) such that µ = fωnu . Then the sequence of measures
µj := cjmin(f, j)ωnu (cj ≥ 1 is a normalization constant, so that µj is a probability
measure) approximates µ. Note, that it is no loss of generality to assume cj ≤ 2,
since this holds for j big enough. Applying the first part one can find a potential
ψj ∈ E1(X,ω), supXψj = −1 for each of the measures µj (it is easy to show that not
only E1(X,ω) but all PSH (X , ω) belongs to L1(µj)). Again, by choosing subsequence
if necessary, we find ψ ∈ PSH (X , ω), supXψ = −1, such that limj→∞ ψj = ψ. In fact
one can extract a bit more information about ψ (see the proof of Theorem 4.6 in [GZ2])
which turns out to be sufficient ot show that ψ ∈ E(X , ω) and ωnψ = fωnu = µ.

3.2.4. The Monge-Ampère equation in Cegrell classes - uniqueness. Since adding a con-
stant does not influence the Monge-Ampère measure of the given function, the problem
of classification of all possible solutions of the problem

(ω + dd c u)n = dµ,

is usually posed with a linear normalization condition supXu = 0 or
∫
X
uωn = 0. But

then, quite contrary to the corresponding problem in the ”flat case”, the problem turns
out to be unexpectedly difficult.
Before we start any considerations we show an example that shows the failure of unique-
ness in general:

Example 3.2.12 ([Bl5]). Let X = Pn, ω = ωFS be the Fubini-Study Kähler form. Let

φ := log(

√
|z1|2 + |z2|2 + · · ·+ |zn|2√
|z0|2 + |z1|2 + · · ·+ |zn|2

), ψ := max
{ k=1,··· ,n }

log(
|zk|√

|z0|2 + |z1|2 + · · ·+ |zn|2
),

(here z = [z0, · · · , zn] are the homogeneous coordinates in Pn).
Then obviously φ−ψ is not constant, both functions have logarithmic pole at the point

c = [1 : 0, · · · , : 0], and a calculation shows that

(ω + dd c φ)n = (ω + dd c ψ)n = δc,

where δc is the Dirac delta measure at the point c.

Below we make some historical notes of positive results regarding the problem of unique-
ness of normalized solutions:
The first result in this direction is due to E. Calabi ([Ca]). He proved that if φ, ψ are
smooth and ωφ, ωψ are Kähler forms (i.e. strictly positive) then uniqueness does hold.
These are natural assumptions from geometer’s perspective and the proof is quite easy
in this case. However both smoothness and strict positivity are crucial in this approach,
hence it gives no insight what to do in general.
The next step was done by Bedford and Taylor [BT5] who proved uniqueness for
bounded φ, ψ provided the underlying manifold is Pn. Their main idea was to control the
L2 norm of the gradient of the difference of φ and ψ.
Using different technique Kołodziej [K3] proved uniqueness for bounded functions on
arbitrary compact Kähler manifold modulo additional mild assumptions on the measure
µ.
The ”bounded” case was finally done by Błocki [Bl5]. The proof has some common
points with the one in [BT5], but is much easier and transparent. Furthermore the proof
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gives some stability results showing that when one perturbs the measure on the right
hand side slightly the normalized solution is in a way close to the original one.
In the Cegrell classes setting Guedj and Zeriahi in [GZ2] observed that Błocki’s argu-
ment, with suitable modifications, can be carried over to prove uniqueness in the class
E1(X,ω). Recently Demailly and Pali [DP] proved uniqueness in the same class for big
forms. The most general result so far was proven very recently by Błocki (see [Bl6]) who
proved that uniqueness does hold in the class E1− 1

2n−1 (X,ω), n = dimX.
Recall that the picture in the flat theory is much clearer due to a result of Cegrell who
proved in [Ce3] that one can prove uniqueness provided the measure µ does not charge
pluripolar sets. The proof however relies heavily on tools that are not available in the
Kähler manifold setting. Nevertheless it is natural to expect that uniqueness in E(X , ω)
should also hold (observe that the functions from the example above are not in E(X , ω)).
Below we present the proof of uniqueness in E(X , ω) taken from [Di3]. The proof hinges
on different ideas than those in papers cited above, since functions in E(X , ω) need not
have bounded L2 gradient and so the methods from [Bl5] and [GZ2] are not applicable
(see however [Bl6] for some ideas in this vein). Instead we make use of tools developed
in the former chapters.

Theorem 3.2.13. Let φ, ψ ∈ E(X , ω) be such that ωn
φ = ωn

ψ. Then φ− ψ is constant.

Proof. Suppose on contrary that φ− ψ 6= const. We will show that this leads to contra-
diction.
Consider first the level sets

At := {φ− ψ = t }, t ∈ R ∪ {+∞}∪{−∞} .

These are all Borel sets which are closed in the plurifine topology. The main ingredient
of the proof is to show that the whole mass of µ := ωn

φ = ωn
ψ is concentrated on exactly

one of the sets At. To achieve this, recall first that the measure charges at most countably
many of the sets At and does not charge neither A+∞ nor A−∞ (the first claim is proved
in [GZ2] Corollary 1.10, and the second follow from the fact that both A+∞ and A−∞ are
pluripolar).
We shall prove that µ charges precisely one of the sets At. Suppose the contrary. Then
we can find t0 ∈ R and a constant 1/2 < q < 1 such that:
(1)

∫
At0

dµ = 0,
(2)

∫
{φ<ψ+t0 } dµ < q,

(3)
∫
{φ>ψ+t0 } dµ < q.

Indeed, one can find t1 ∈ R such that

0 <

∫
{φ<ψ+t1 }

dµ < 1,

(for othervise the whole mass is concentrated on one level set). Now, if
∫
At1

dµ = 0, we
take t0 := t1, q = max {

∫
{φ<ψ+t1 } dµ, 1 −

∫
{φ<ψ+t1 } dµ }+ε, with ε > 0 so small that

still q < 1. If At1 is charged, then for almost every t < t1 the set At is not charged and
by monotone convergence one can take t2 < t1 close enough to t1 such that both At2 is
massless and still 0 <

∫
{φ<ψ+t1 } dµ < 1. Take t0 := t2, q defined as before and we get

the desired properties.
Since adding a constant to φ or ψ is harmless for our discussion we assume from now
on that t0 = 0.
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Consider the new measure

µ̂ :=

{
(1/q)µ, on {φ < ψ }
cµ, on {φ ≥ ψ },

where c is a nonnegative normalization constant so that µ̂ is a probability measure (note
that this is possible, since, by assumption, µ charges the set {φ ≥ ψ }).
Of course µ̂ does not charge pluripolar sets either (and is also a Borel measure since
the set {φ ≥ ψ } is Borel). By [GZ2] we can solve the Monge-Ampère equation

ωnρ = µ̂, ρ ∈ E(X , ω), supXρ = 0.

Note that at this moment we do not know if ρ is uniquely defined: we just choose one
solution.
In such a case we have a set inclusion

Ut := {(1− t)φ < (1− t)ψ + tρ } ⊂ {φ < ψ }
for every t ∈ (0, 1). Hence on Ut we have

ωφ
n−1 ∧ω(1−t)ψ+tρ = (1− t)µ+ t ωn-1

φ ∧ωρ ≥ (1 + ((1/q)1/n − 1)t)ωn
φ ,

where we have made use of Theorem 3.1.8 and Corollary 3.1.9.
So, by the comparison principle

(1 + ((1/q)1/n − 1)t)

∫
Ut

ωn
φ ≤

∫
Ut

ωn-1
φ ∧ω(1−t)ψ+tρ ≤

≤
∫
Ut

ωn-1
φ ∧ω(1−t)φ+t0 = (1− t)

∫
Ut

ωn
φ +t

∫
Ut

ωn-1
φ ∧ω.

Rearranging terms we obtain

(3.10) (1/q)1/n

∫
Ut

ωn
φ ≤

∫
Ut

ωn-1
φ ∧ω.

Note that exchanging ωn-1
φ with ωn-1

ψ in the argument above gives

(3.11) (1/q)1/n

∫
Ut

ωn
ψ ≤

∫
Ut

ωn-1
ψ ∧ω.

(again we make use of Corollary 3.1.9 here). Now let t↘ 0. The sets Ut form an increasing
sequence and Ut ↗ {φ < ψ } \ { ρ = −∞}. But both measures ωn

φ and ω
n-1
φ ∧ω do not

charge pluripolar sets, hence we obtain

(3.12) (1/q)1/n

∫
{φ<ψ }

ωn
φ ≤

∫
{φ<ψ }

ωn-1
φ ∧ω.

One can do this reasoning also on the set {φ > ψ }. Namely we find a measure defined
like µ̂, but with respect to the set {φ > ψ }. Fixing ωn-1

φ (or ωn-1
ψ ) and arguing the same

way we obtain

(3.13) (1/q)1/n

∫
{φ>ψ }

ωn
φ ≤

∫
{φ>ψ }

ωn-1
φ ∧ω.

But adding these inequalities and the assumption that A0 is massless one obtains

(1/q)1/n = (1/q)1/n

∫
{φ>ψ }

ωn
φ +(1/q)1/n

∫
{φ<ψ }

ωn
φ ≤

≤
∫
{φ>ψ }

ωn-1
φ ∧ω +

∫
{φ<ψ }

ωn-1
φ ∧ω ≤ 1,
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a contradiction.
So, we can assume that the whole mass of µ is concentrated on {φ = ψ } 6= X.
Now we prove inductively that the same holds (i.e. the whole mass is concentrated on

A0) for any of the measures

ωkφ ∧ωsψ ∧ωn−k−s, k, s ∈ { 0, · · · , n− 1 }, 0 ≤ k + s ≤ n.

The case k + s = n is already shown above.
Suppose the claim is proven for all k and s such that k+ s = r+ 1. Below we prove it
(for all cases) such that k + s = r.
Let φj := max {φ,−j }. Fix t ∈ (0, 1). Consider the sets

Vt,j := {φ+ (t/j)φj + (3/2)t < ψ } ⊂ {φ < ψ } .
Again, by the comparison principle we obtain∫

Vt,j

ωφ
k ∧ωψs ∧(ωψ +(t/j)ω)∧ωn−r−1 ≤

∫
Vt,j

ωφ
k ∧ωψs ∧(ωφ +(t/j)ωφj

)∧ωn−r−1.

Now, by induction hypothesis (and set inclusions) the first terms on both sides vanish
and the equation above reads∫

Vt,j

ωφ
k ∧ωψs ∧ωn−r ≤

∫
Vt,j

ωφ
k ∧ωψs ∧ωφj

∧ωn−r−1.

Note that Vt,j is a decreasing sequence of sets in terms of j. Letting j → ∞ and using
vanishing on pluripolar sets we obtain∫

{φ+(3/2)t<ψ }
ωφ

k ∧ωψs ∧ωn−r ≤
∫
{φ+(3/2)t<ψ }

ωφ
k+1 ∧ωψs ∧ωn−r−1 = 0,

where the last equality again follows from the induction hypothesis. Finally letting t↘ 0
we obtain ∫

{φ<ψ }
ωφ

k ∧ωψs ∧ωn−r ≤
∫
{φ<ψ }

= ωφ
k+1 ∧ωψs ∧ωn−r−1 = 0.

Again exchanging φ with ψ and {φ < ψ } with {φ > ψ } one obtains that the measures
ωφ

k ∧ωψs ∧ωn−r are massless on {φ 6= ψ }. This finishes the proof of the induction step.
Notice that in particular for k = s = 0 we obtain∫

{φ6=ψ }
ωn = 0.

But {φ 6= ψ } is a pluri-fine open set, and ωn is equicontinuous with the Lebesgue
measure. So a (non empty) pluri-fine open set would have zero Lebesgue measure, a
contradiction Theorem 2.1.23. This shows that our initial assumption φ − ψ 6= const is
false. �

3.2.5. Stability of solutions. The study of PDE’s stability, roughly speaking, consists of
the following: given an equation with fixed data, we perturb the relevant parameters in a
controlled way and analyze the deviation of the solution of the perturbed equation from
the initial one. Usually stability is the first step towards regularity theory of solutions.
The basic (but fundamental) observation is that stability breaks down if there is no
uniqueness of solutions of the considered problem. Indeed, take two different solutions
with the same data and consider the second one as a solution of perturbed problem with
”zero” perturbation. This clearly shows that there is no way to controll deviation of
solutions in terms of the deviation of the parameters.
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It should be noted that it is usually the case in PDE theory that regularity is much
more difficult when there is no uniqueness. However, we have already shown uniqueness
of the Monge-Ampère operator on compact Kähler manifolds for a very general class of
functions. It is therefore meaningfull to pose the stability question.
Below we state three stability results. The first is due to Błocki, the second was proved
by Eyssidieux, Guedj and Zeriahi and the third is due to Kołodziej.

Theorem 3.2.14 ([Bl5]). Let u, v ∈ PSH (X , ω)∩L∞(X) solve the equations

(ω + dd c u)n = fωn, (ω + dd c v)n = gωn,

where f and g are nonnegative functions satisfying
∫
X
fωn =

∫
X
gωn =

∫
X
ωn. Assume

that the solutions are normalized so that∫
X

uωn =

∫
X

vωn.

Then there exists a constant C depending on X, supXu and supXv, such that

||u− v||
L

2n
n−1

≤ C||f − g||L1 ,

(norms are taken with respect to the density ωn).

This shows that among the bounded solutions, small deviation of the function f (per-
turbation in L1) forces the perturbed solution to be close in L

2n
n−1 norm (provided we

controll the L∞ norms of the solutions).

Theorem 3.2.15 ([EGZ]). Let u, v ∈ PSH (X , ω) solve the equations

(ω + dd c u)n = fωn, (ω + dd c v)n = gωn,

where f and g are nonnegative functions satisfying
∫
X
fωn =

∫
X
gωn =

∫
X
ωn and more-

over f, g ∈ Lp(ωn), p > 1. Then there exists a constant C dependent on X, p, s, ε, ||f ||Lp , ||g||Lp

such that
||u− v||∞ ≤ C||u− v||

s
nq+s+ε

Ls(ωn) ,∀s > 0, ε > 0.

Note that this stability result requires more regularity (we need to know that the
Monge-Ampère measures are in Lp) but also gives us significantly more: now the per-
turbed solution is uniformly close to the original one. It should be also noted that in
[EGZ] only the case s = 2 was proven but the general case follows in the same lines.

Theorem 3.2.16 ([K3]). In the same setting as in the previous theorem there exists a
constant
c = c(X, p, ε, c0), where c0 is an upper bound for ||f ||p and ||g||p, such that

||u− v||∞ ≤ c||f − g||
1

n+3+ε

1 ,

provided one normalizes u and v so that supX(u− v) = supX(v − u).

(Recall that the assumption f, g ∈ Lp, p > 1 forces boundedness of solutions u, v).
Although the normalization here is somewhat strange, the stability result is quite impor-
tant since it deals merely with the Monge-Ampère densities of u and v, which quite often
is the only information we have about the functions.
Below we sketch a proof of this important result. Basically, all the following argument is
directly quoted from [K3]. Recall that by the L∞ estimate, there exists a constant c(X,B)
dependent only on X and on the bound for the norm ||f ||p ≤ B, such that supXφ −
infX φ ≤ c(X,B). Stability is an immediate consequence of the following theorem:
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Theorem 3.2.17. Let φ, ψ, f, g be as above. Fix A > 0, such that ||f ||p ≤ A, ||g||p ≤ A.
Let also a = c(X, 3

2
A) and the functions Q : R>0 → R and κ : R>0 → R be defined as in

Lemma 3.2.3. Define also γ(t) = Dκ−1(t) (D is some non negative constant - we fix it,

as in [K3], to be ( 2a
a+1

)n
( 3
2
)
1
n−1

3
however we wish to emphasize that its value is immaterial

- it serves merely as a normalization condition). κ−1(t) is the inverse of the function κ.
Under these assumptions if ‖f − g‖L1 ≤ γ(t)tn+3 then

‖φ− ψ‖L∞ ≤ Ct

for t < t0, where t0 > 0 depends on γ, and C depends on the Lp-norms of f and g.

Indeed suppose this result were true. Fix ε > 0. Choose also Q(t) = cmt
m for m = n2

ε
.

Then γ(t)tn+3 = ctn+3+ε is increasing on [0, t0). If for some t1 ∈ [0, t0), we have ||f−g||1 =

γ(t1)t
n+3
1 then ||φ−ψ||∞ ≤ C1t1 ≤ C2||f−g||

1
n+3+ε

1 . On the other hand is such t1 does not

exist (i.e. ||f−g||1 ≥ γ(t0)t
n+3
0 ) then ||φ−ψ||∞ ≤ 2a( ||f−g||1

γ(t0)tn+3
0

)
1

n+3+ε ≤ c(a, ε)||f−g||
1

n+3+ε

1 .

Thus stability holds with the constant c = max {C2, c(a, ε) }.
Below we give the proof of Theorem 3.2.17.
Assume, without loss of generality, that

∫
{ψ<φ}(f + g)ωn ≤ 1, (if this was not hte case

the exchange the roles of ψ and φ).
By adding constants to both φ and ψ, (this does not affect the pertinent parameters),
we can also assume that 0 ≤ φ ≤ a.
Since limt→0γ(t) = 0, by the definition of κ we can fix 0 < t0 < 1 small enough, so that

γ(t0)t0
n+3 < 1

3
, (clearly this will also hold for 0 < t < t0).

Fix such a t and define the set Ek = {ψ < φ− kat}.
The following estimate holds∫

E0

gωn =
1

2

∫
E0

(
(f + g) + (g − f)

)
ωn ≤ 1

2
(1 +

1

3
) =

2

3
.

Consider the function g1, defined as 3g
2
on E0 and some non negative constant on the

complement. By the above estimate, one can choose this constant so that
∫
X
g1ω

n = 1

and the Lp-norm is bounded by 3A
2
.

Thus there exists a continuous solution ρ ∈ PSHω(X) to the problem

ωρ
n = g1ω

n, maxXρ = 0,

where ||ρ||∞ ≤ a, since ||g1||p ≤ 3
2
A.

Observe that −2at ≤ −tφ+ tρ ≤ 0, thus we obtain the chain of inclusions

E2 ⊂ E := {ψ < (1− t)φ+ tρ} ⊂ E0.

Let G be the set {f < (1− t2)g}. Then on E0 \G, we get(
(1− t2)−

1
nωφ

)n ≥ gωn,
(
(
3

2
)−

1
nωρ

)n
= gωn.

By the inequality for mixed Monge-Ampère measures (the version from [K3] is sufficient
here) it follows that on E0 \G,

(
3

2
)−

n−k
n (1− t2)−

k
nωφ

k ∧ ωρn−k ≥ gωn.

Let q = (3
2
)

1
n > 1. The above estimate can be written as:

ωkφ ∧ ωρn−k ≥ qn−k(1− t2)
k
n gωn.
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Thus

ωtρ+(1−t)φ
n ≥

(
(1− t)(1− t2)

1
n + qt

)n
gωn

≥
(
(1− t)(1− t2) + qt

)n
gωn

≥
(
1 + t(q − 1)− t2

)
gωn

≥
(
1 +

t

2
(q − 1)

)
gωn.

(3.14)

By the definition of G and the assumptions we obtain

t2
∫
G

gωn ≤
∫
G

(g − f)ωn ≤ γ(t)tn+3,

which reads:

(3.15)
∫
G

gωn ≤ γ(t)tn+1.

Thus we get (
1 +

t

2
(q − 1)

) ∫
E\G

gωn ≤
∫
E

ωtρ+(1−t)φ
n

≤
∫
E

ωψ
n

≤
∫
E\G

gωn + γ(t)tn+1.

(3.16)

(the second inequality above is justified by the comparison principle).
Thus

q − 1

2

∫
E\G

gωn ≤ γ(t)tn.

The set inclusion E2 ⊂ E implies that

q − 1

2
(

∫
E2

gωn − γ(t)tn+1) ≤ q − 1

2
(

∫
E2

gωn −
∫
G

gωn) ≤ q − 1

2

∫
E\G

gωn 6 γ(t)tn,

leading to the inequality∫
E2

gωn ≤ (t+
2

q − 1
)γ(t)tn ≤ 3

q − 1
γ(t)tn

for small t.
On the other hand, by Theorem 3.1.6 we have that

Capω(E4) ≤ (
a+ 1

2at
)n

∫
E2

gωn.

Coupling thes results we obtain

Capω(E4) ≤ (
a+ 1

2a
)n

3

q − 1
γ(t).

The, if the set E ′ := {ψ < φ− (4a+ 2)t} was nonepmty, we would get:

2t ≤ κ(Capω(E4)) ≤ κ((
a+ 1

2a
)n

3

q − 1
γ(t)) = t,

a contradiction for t > 0. Thus ψ > φ− (4a+ 2)t, which confirms our claim.
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Since stability estimates can be used in the further study of regularity of solutions it is
important to obtain sharp estimates. In particular it is important to know whether expo-
nents in the results above are sharp. As example 3.2.19 will show, the stability exponents
in Eyssidieux, Guedj and Zeriahi theorem are sharp in some cases. The Kołodziej’s sta-
bility exponent, however, can be improved to (optimal) 1

n+ε
and the proof of this result,

taken from [DZ], will be given below.

Proof. Before we proceed further we make a small improvement of the stability exponent
in Kolodziej’s theorem which is relatively easy:
Note that in the definition of set G = {f < (1 − t2)g} one can exchange t2 with t

b
(b

is a large constant independent of the involved parameters), and the same argument still
goes through (except that in the forelast step instead of E4 we take the set E2+s for s
big enough depending only on b, such that using the Proposition 3.1.7 we can kill the
contant in front of γ(t)tn). Thus from ||f − g||1 ≤ γ(t)tn+2 we obtain ||φ−ψ||∞ ≤ Ct. In
particular the stability result holds with exponent 1

n+2+ε
.

Further improvements, however, are nontrivial, and therefore we first describe the
strategy of proof and then technical details will be provided.
Trying to improve the exponent, one has to follow the main steps of the original proof
and carefully analyze points where an exponent loss occurs. Therefore we shall iterate
the original argument, defining at each step new function ρ and use the previous step
to get estimates for ||ρ − ψ||∞, which in turn will be used to choose the new set E in a
”better” way. Each time the exponent will improve a bit (while keeping all the relevant
quantities under control). In the limit we would get the desired optimal exponent.

The first step of the iteration is Kołodziej’s argument (with the improvement yielding
exponent 1

n+2+ε
) and in the sequel this will will be often denoted as Step 1.

Now the iteration procedure form Step k to Step k + 1 goes as follows:
The mechanism is based on the fact that ||f − g||1 ≤ γ(t)tβk (so, in the improved
original proof in Step 1 we have β1 = n + 2) yields

∫
{ψ+mt<φ }(ωψ)n ≤ c0t

n for some
constant m = m(k) and c0 (in what follows ci denote constants independent of the
relevant quantities). So we try to find β as small as possible for which this implication
holds true with uniform control on c0 and enlarging m if needed.
So assume that the k-th Step has been terminated and consider the inequality

||f − g||1 ≤ γ(t)tβk+1 , t < 1.

Then if l := t
βk+1

βk , βk+1 < βk, we obtain ||f −g||1 ≤ γ(l)lβk , so from Step k we know that

(3.17)
∫
Er

gωn ≤ γ(l)ln,

where, as before, Er := {ψ < φ− rat}, and r = r(k) is a constant under control, whose
existence is granted by the termination of the k-th Step. Hence

(3.18)
∫
Er

gωn ≤ c1t
βk+1n

βk , t ≤ t0

(recall γ(t) decreases to 0, as t↘ 0).
Now fix a small positive constant δk to be choosen later on.
Consider the ”new” function

g1(z) =

{
(1 + tδk

2
)g(z), z ∈ Er(k)

c2g(z), z ∈ X \ Er(k),
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where 0 ≤ c2 ≤ 1 is choosen such that
∫
X
g1ω

n = 1. (The constant 1
2
in front of tδk is

taken to assure that the integral over Er(k) is less than 1. Note that despite the fact that
the case t being small is of main interest, when δk is also small the quantity tδk cannot be
controlled by a constant smaller than 1). As in Step 1 we find a solution ρ (dependent
on k) to the problem (ωρ)

n = g1ω
n, maxXρ = 0. Again ρ ≥ −a and we renormalize ρ by

adding a constant so that maxX(ψ− ρ) = maxX(ρ−ψ) (this can by done in an uniform
way).
Now by Step k

||ρ− ψ||∞ ≤ c3||g − g1||
1

βk+ε

1 = c3([

∫
Er(k)

+

∫
X\Er(k)

]|g − g1|ωn)
1

βk+ε =

=c3(2t
δk

∫
Er(k)

gΩ)
1

βk+ε ≤ c4t
δk+

βk+1n

βk
βk+ε .

If δk is sufficiently small the last exponent is less than 1 and we define αk := 1−
δk+

βk+1n

βk

βk+ε
.

Then by the above estimate

(3.19) Es = {ψ + sat < φ } = {(1− 1

2
tαk)(ψ + sat) < (1− 1

2
tαk)φ } ⊂

⊂ {ψ < (1− 1

2
tαk)φ+

1

2
tαkρ+

1

2
c4t− sat(1− 1

2
tαk) } =: E ⊂

⊂ {ψ < (1− 1

2
tαk)φ+

1

2
tαkψ + c4t− sat(1− 1

2
tαk) } =

= {ψ + (s− c4
1− 1

2
tαk

)at < φ } ⊂ Em,

provided s ≥ 2c4
a

+ m, (the constant 1
2
is again added in order to control 1 − 1

2
tδk from

below).
Consider the ”new” set

G1 := { f < (1− tαk+3δk

8n2
n−1

n

)g } .

Using that h(t) = (1 + tδk

2
)

1
n − 1− 1

4n2
n−1

n
t2δk is increasing in [0, 1] and hence nonnegative

there, we conclude as in Step 1, że na Em \G

(3.20) (ω 1
2
tαkρ+(1− 1

2
tαk )φ)

n ≥ ((1− 1

2
tαk)(1− tαk+3δk

8n2
n−1

n

)
1
n + (1 +

tδk

2
)

1
n
1

2
tαk)ngωn ≥

≥ ((1− 1

2
tαk)(1− tαk+3δk

8n2
n−1

n

) + (1 +
1

4n2
n−1

n

t2δk)
1

2
tαk)ngωn ≥ (1 +

1

2

tα+2δk

8n2
n−1

n

)gωn.

As in Step 1 on G we obtain

(3.21)
tαk+3δk

8n2
n−1

n

∫
G

gωn ≤
∫
G

(g − f)ωn ≤ γ(t)tβk+1 ,

so, using (3.20), (3.21) and the comparison principle we obtain

(3.22) (1 +
tαk+2δk

16n2
n−1

n

)

∫
E\G

gωn ≤
∫
E

(ω(1−tαk )φ+tαkρ)
n ≤

≤
∫
E

gωn ≤
∫
E\G

gωn + c5γ(t)t
βk+1−αk−3δk .
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Finally, as in Step 1, we get∫
Es\G

gωn ≤
∫
E\G

gωn ≤ c6γ(t)t
βk+1−2αk−5δk

and ∫
Es

gωn ≤ c7γ(t)t
βk+1−2αk−5δk .

If βk+1− 2αk − 5δk = n, we can proceed as in Step 1 to get max(φ−ψ) = max(ψ− φ) ≤

(2s + 2)t, and ||φ − ψ||∞ ≤ C(ε)||f − g||
1

βk+1+ε

1 , ∀ε > 0. Of course, we have to adjust
here the function κ to the constant c7. However even the (hypothetical) overgrowth of c7
may be handled for small t at the expense on an epsilon loss of the exponent. Since this
does not affect the argument significantly, we omit this step in the sequel for the sake of
brewity.
Now βk+1 − 2αk − 5δk = n yields

(3.23) βk+1(1 +
2n

βk(βk + ε)
) = n+ 2 + 5δk − 2

δk
βk + ε

.

Note that δk can be made arbitrarily small. Also if βk > n+ ε0 for some ε0 >> ε), we
get that βk+1 < βk thus the stability exponent increases.
Thus, in the Step k + 1 we have defined new constants δk, mk+1, βk+1, such that:
(1) δk is sufficiently small so that, from (3.23) one can get n < βk+1 < βk and αk < 1,
(2) the constant mk+1 (i.e. s in the reasoning above) is under control and moreover∫

{ψ+mk+1at<φ }
(ω + dd c ψ)n ≤ c0t

n.

This finishes Step k + 1.
Thus βk is a convergent sequence. Assume also that δk ↘ 0. THen if A is the limit of
the sequence {βk}, we obtain

A(1 +
2n

A(A+ ε)
) = n+ 2 ⇒ A =

n+ 2− ε+
√

(n− 2 + ε)2 + 8ε

2
.

If ε → 0+ ⇒ A → n, so βk are arbitrarily close to n, provided k is big enough and ε is
chosen small independently of the recursion steps. �

Remark 3.2.18. The proof above can be repeated in the case of big forms without any
changes. Therefore stability also holds in the case of Monge-Ampère equations in the big
case.

The following example, taken from [DZ], shows that the obtained exponent is sharp:

Example 3.2.19. Fix appropriate positive constants B, D, such that D < B and B22α <
log 2 +D for some fixed α ∈ (0, 1) (such constants clearly exist). Then the function

ρ̂(z) :=


B||z||2α, ||z|| ≤ 1

max{B||z||2α, log(||z||) +D}, 1 ≤ ||z|| ≤ 2

log(||z||) +D, ||z|| ≥ 2

is well defined, plurisubharmonic in Cn and of logarithmic growth. One can smooth out
ρ̂, so that the new function ρ is again of logarithmic growth, radial, smooth away from
the origin and ρ(z) = B||z||2α for ||z|| ≤ 3

4
.

This smoothing can be obtained in many ways. It is enough to observe that the function

m(x, y) = max(x, y),
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can be approximated by a decreasing sequence of smooth convex functions mε, such that
mε(x, y) = x if x − y ≥ ε and mε(x, y) = y if y − x ≥ ε. Thus if ε is small enough,
then exchanging the maximum int the definition of ρ̂ by mε we get the claimed smoothing.
More details concerning this technique can be found in [Si2] and [De3].
Via the standard inclusion

Cn 3 z −→ [1 : z] ∈ Pn

one identifies ρ(z) with

ρ([z0 : z1 :, · · · , : zn]) := ρ(
z1

z0

, · · · , zn
z0

)− 1

2
log(1 +

||z||2

|z0|2
) ∈ PSH(Pn, ωFS)

(here ωFS is the Fubini-Study metric on Pn, and the values of ρ on the hypersurface
{z0 = 0} are understood as limits of values of ρ when z0 approaches 0.) It is clear
that ωnρ = (ddcρ)n in the chart z0 6= 0 and in fact one can neglect what happens on the
hypersurface at infinity.
Now for a vector h ∈ Cn one can define ρh(z) := ρ(z + h) and analogously the corre-
sponding ρh. Note that when ||h|| → 0, we get ρh ⇒ ρ.
Observe that

(3.24) B||h||2α ≤ ||ρh − ρ||∞.
The Monge-Ampère measures of ρ and ρh are smooth functions except at the origin
and −h, respectively and belong to Lp(ωnFS), for some p > 1 dependent on α.
Now

∫
Pn |ωnρ − ωnρh

| =
∫

Cn |(ddcρ)n − (ddcρh)
n|. To estimate the last term we divide Cn

into three pieces (we suppose ||h|| is small):∫
Cn

|(ddcρ)n − (ddcρh)
n| =

∫
{||z||≤2||h||}

+

∫
{2||h||<||z||≤ 1

2
}
+

∫
{||z||> 1

2
}
.

Using the fact that ρ and ρh are smooth functions in a neighbourhood of {||z|| > 1
2
} one

can easily estimate the last term by ||h||C0 for some constant independent of h. For the
first two terms we observe that (ddcρ)n = Bn||z||2n(α−1), (ddcρh)

n = Bn||z + h||2n(α−1).
Now we use a computation trick which can be found in [KW].∫

{||z||≤2||h||}
|(ddcρ)n − (ddcρh)

n| =

= Bn

∫
{||z||≤2||h||}

|||z||2n(α−1) − ||z + h||2n(α−1)| ≤

≤ 2Bn

∫
{||z||≤3||h||}

||z||2n(α−1) = C1||h||2nα.

We estimate the second term as follows:∫
{2||h||≤||z||≤ 1

2
}
|(ddcρ)n − (ddcρh)

n| =

= Bn

∫
{2||h||≤||z||≤ 1

2
}
|||z||2n(α−1) − ||z + h||2n(α−1)| ≤

≤ Bn

∫
2||h||<||z||

|
∫ 1

0

< ∇||z + th||2n(α−1), h > |dt ≤

≤ C2||h||
∫
||h||<||z||

||z||2n(α−1)−1 ≤ C3||h||2nα,
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provided α < 1
2n
, so that the integral is finite. Finally we obtain for small ||h||

(3.25)
∫

Pn

|ωnρ − ωnρh
| ≤ C1||h||2nα + C3||h|| ≤ C4||h||2nα.

Suppose now that we have a stability estimate ||φ− ψ||∞ ≤ C5||f − g||
1
m
1 . Then coupling

(3.24) and (3.25) one gets

||h||2α ≤ C6(||h||2nα)
1
m , α ∈ (0,

1

2n
).

If we let ||h|| → 0 this can hold only if m ≥ n.
Finally, using the same example and similar estimates one can show that the Eyssi-
dieux, Guedj and Zeriahi exponent is also sharp, provided that p < 2 and s > 2np

2−p (the
reason for these obstructions is that the second integral we estimate as in the example
would be divergent otherwise). It is, however, very likely that these exponents are sharp
in general.

3.2.6. Regularity of solutions. As we have already mentioned, stability is usually useful in
proving higher regularity of solutions of specific PDE’s. Thus the results in the previous
subsections suggest that we can expect better regularity properties for the solutions. A
recent result, due to Kołodziej confirms these expectations:

Theorem 3.2.20 ([K5]). Let φ ∈ PSH (X , ω) solve the Dirichlet problem

(ω + dd c φ)n = fωn, supXφ = 0, φ ∈ PSH (X , ω),

where f ≥ 0 is a function from the space Lp(ωn), p > 1. Then φ is Hölder continuous,
with Hölder exponent dependent on p, the dimension of X and on its geometry.

Below we sketch the main ideas of the proof of this reult.
Recall that locally (in a coordinate chart) φ can be approximated via convolutions.
Using the continuity of φ (which was proven in earlier subsections) and the (complicated)
Richberg technique one can glue these local approximants, so that one can obtain a
sequence of global ω-psh functions converging to φ. This process of patching local data is
affected by the local geometry of the manifold and this is the place where dependence on
X appears. The rate of convergence in local L1 norms, in turn, depends on the laplacian
of φ (due to Jensen formula from potential theory). By these results one can control the
rate of convergence in L∞ norm, away from sets of small Lebesgue measure.
On the other hand, due to Theorem 3.2.16 (or its generalization) the solution of the
Dirichlet problem

ψ ∈ PSH (X , ω), (ω + dd c ψ)n = gωn, supX(φ− ψ) = supX(ψ − φ),

where

g(z) =

{
0, for z ∈ E,
cf for z ∈ X \ E

(the constant c is chosen so that
∫
X
gωn =

∫
X
ωn) is, for small sets E, uniformly close to

φ.
Coupling these two ways of approximation of φ one can prove that too slow convergence
in L∞ norm of the patched-from-local-data sequence would lead to contradiction with the
vanishing of g on (suitably chosen) small set E. Details of the proof can be found in [K5].
In a particular case when X is homogeneous i.e. when the group of automorphisms
preserving ω acts transitively on X (for example this is the case for the manifold Pn
equipped with the Fubini-Study form) Eyssidieux, Guedj and Zeriahi in [EGZ] have
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proved that the Hölder exponent is independent of the geometry X, and it depends
merely on n = dimX and p (one can take any exponent smaller than 2

2+ np
p−1
). Their proof

is based on approximation of φ by φh - a composition of φ with an automorphism close
to the identity (an analogue of a shift by a small vector in Cn). Then Theorem 3.2.15 is
used and finally an easy estimate of the L2 norm of the difference φh − φ completes the
proof. We refer to [EGZ] for the details.
These results lead to natural question of precise dependence of the optimal Hölder
exponent in terms of the geometry of X (if such a dependence indeed exists). Perhaps
even more interesting is the question of generalizing Kołodziej’s theorem in the case of
big forms (of course this is meaningful only if the continuity statement is true). As we
shall see in the next section a positive solution of these problems would lead to very
interesting applications in geometry.

4. Applications in geometry

4.1. The Kähler-Ricci flow - behavior at critical times. The Kähler-Ricci flow is a
parabolic flow, which is a complex counterpart of the more familiar Ricci flow. The latter
has become one of the main objects of study in Riemannian geometry and, by works of
Hamilton, Perelman and other authors, has found spectacular applications such as the
solution of the Poincare conjecture.

Definition 4.1.1 ((Normalized) Kähler-Ricci flow). Let X be a Kähler manifold
equipped with a Kähler form ω. The Kähler-Ricci flow (starting from ω) is generated by
the equation

(4.1)
∂ωt
∂t

= −Ricωt + µωt, ω0 = ω,

where ωt is a time dependent Kähler form, while Ricωt is its Ricci form. The constant µ
depends on (X,ω) and its precise meaning will be explained below.

Let us make some heuristic observations regarding this flow. By a general PDE theory
we get a short time existence, i.e. existence for t close to 0. Suppose however that the
flow can actually be continued up to infinity and moreover converges to some limit form
ω∞. The term ∂ωt

∂t
should, at least on a discrete sequence of times, tend to a zero form.

Thus we would obtain in the limit the equation

(4.2) Ricω∞ = µω∞.

Note that the left hand side represents in cohomology the class c1(X), and ω∞ should be
non-negative (for starting with a kähler form ω, ωt will remain Kähler for all the time).
So, by the above heuristics we find that the constant µ should be a suitably chosen
normalization constant, so that the equation (4.2) can hold, at least on cohomology level.
The following cases are geometrically interesting:

• If the anticanonical bundle −KX is ample then one can show (by a deep geomet-
rical Kodaira embedding theorem) that the corresponding to −KX Chern class
c1(X) is in fact Kähler (carries a Kähler form). Thus c1(X) > 0, so in this case
µ > 0. Traditionally geometers study the flow with the constant µ = 1 and the
general case follows by a suitable rescaling argument.

• If in turn KX is ample, then c1(X) < 0 and thus µ < 0. Traditionally one studies
the flow with the constant µ = −1.

• If KX = 0 (so that the first Chern class is zero) the constant µ must be zero.
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• If KX is nef and big then (in some sense) c1(X) ≤ 0. Again a good choice is
µ = −1, however the equation (4.2) can hold only in a suitably defined weak
sense.

Remark 4.1.2. Note that a smooth solution (if such solution exists) of the equation

Ricω = λω

with suitably chosen constant λ is a very special Kähler form. Such forms (or rather met-
rics generated by such forms) are called Kähler-Einstein metrics. These play fundamental
role in complex geometry, similarly to the Einstein metrics in Riemannian geometry.
Of course a necessary assumtion for existence of such metrics is that c1(X) must be
definite. In the cases c1(X) < 0 and c1(X) = 0 such a metric always exists. So, in
these cases one can hope that our heuristics are indeed true. The existence in the case
c1(X) > 0 depends on additional assumptions, however the full classification of all those
manifolds admitting Kähler-Einstein metrics with c1(X) > 0 remains one of the most
important unsolved problems in complex geometry. We refer to [T], where one can find a
thorough discussion of Kähler-Einstein metrics and the problem of their existence.

The analysis of the Kähler-Ricci flow is in some sense easier then the ordinary Ricci
flow, since (4.1) man be restated as a (scalar) parabolic equation for the potentials. In
order to show this, note that from (4.1) one obtains the following cohomology equation

[
∂ωt
∂t

] = −c1(X) + µ[ωt].

Let us divide the argument in two cases.
Case 1. Let µ 6= 0. For simplificity we choose the representative of c1(X) to be Ricω -
in fact one can take this representative arbitrarily. Then, from the ∂∂̄-lemma (we refer
to a similar reasoning in the Calabi-Yau subsection) we get

ωt =
Ricω
µ

+ eµt(ω − Ricω
µ

) + i∂∂̄φt

for some potential φt dependent on t. Thus we obtain

µωt −Ricωt =
∂ωt
∂t

= µeµt(ω − Ricω
µ

) + µ
Ricω
µ

−Ricω + i∂∂̄
∂φt
∂t

= µωt − µi∂∂̄φt + i∂∂̄
∂φt
∂t

.

This yields

i∂∂̄log(
ωnt
ωn

) = i∂∂̄
∂φt
∂t

− µi∂∂̄φt.

Now, since X is compact, any pluriharmonic function must be constant. Thus we get an
equation

∂φt
∂t

= log(
ωnt
ωn

) + µφt + ct,

where ct is some constant dependent only on t. By suitable normalization of the potential
φt we can assume that ct = 0. Thus we obtain the following parabolic equation

(4.3)

{
ωnt = e

∂φt
∂t

−µφtωn

φ0 = 0.

Case 2. Niech µ = 0. From the heuristics above it follows that the suitable geometric
situation is c1(X) = 0. Thus [∂ωt

∂t
] = 0, so the cohomology class ωt is independent of t.
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If ωt = ω + i∂∂̄φt (again we use the ∂∂̄-lemma), and Ricω = i∂∂̄hω (such a potential hω
exists, for c1(X) = 0) then

−Ricωt +Ricω − i∂∂̄hω = −Ricωt = i∂∂̄
∂φt
∂t

.

Like the first case the equation can be reformulated (with a suitable normalization of φt)
as the problem

(4.4)

{
ωnt = e

∂φt
∂t

+hωωn

φ0 = 0.

Thus the Kähler-Ricci flow is equivalent to a parabolic counterpart of the Monge-Ampère
equation on X (if µ 6= 0 the underlying form also varies). As we have already mentioned
in the cases c1(X) < 0 and c1(X) = 0 one can hope for a long time existence and
convergence in the limit to a Kähler-Einstein metric. This indeed holds, as Cao has
shown.

Theorem 4.1.3 ([Cao]). Let X be a compact Kähler manifold with an ample or trivial
canonical bundle (in terms of Chern classes c1(X) < 0 or c1(X) = 0, respectively). The
the Kähler-Ricci flow exists for t ∈ [0,+∞) and converges in the limit to a smooth form
ω∞, such that Ricω∞ = µω∞.

This theorem may be regarded as an alternative proof of existence of Kähler-Einstein
metrics in these cases. Cao’s proof is (highly) nontrivial, and his methods are based on
PDE theory without using any pluripotential notions.
The case c1(X) > 0 is however more interesting. Since the Kähler-Einstein metric does
not always exist we cannot expect analogous behaviour of the flow. Instead one can ask
whether by using the flow one can characterize those manifolds, which satisfy c1(X) > 0
and admit Kähler-Einstein metrics. This question is an object of very intensive studies
in the recent years.
Important results in this direction have been obtained by Chen and Tian ([CT1] and
[CT2]). In these articles the authors have shown that under some geometric assumptions
on the initial form ω (guaranteeing existence of Kähler-Einstein metric on X) the Kähler-
Ricci flow indeed exists for all the time and converges to a Kähler-Einstein metric. The
proof of Chen and Tian’s theorem again relies on PDE theory and on some deep geometric
facts.
A more recent result is an unpublished theorem of Perelman and its generalization by
Tian and Zhu [TZh].

Theorem 4.1.4 (Perelman - Tian - Zhu theorem). Let X be a Kähler manifold, such
that c1(X) > 0. If X admits Kähler-Einstein metric, then the Kähler-Ricci flow starting
from arbitrary Kähler form representing c1(X) has long time existence and converges in
a suitable sense to a Kähler-Einstein metric.

Intuitively this solves the first part of the problem of characterization of Kähler-Einstein
manifolds. The second part, i.e. the explanation how the flow behaves under absence
of such metrics is still not well understood. It is worth mentioning that an important
ingredient in Tian and Zhu’s proof is the L∞-estimate of Kołodziej (see the Calabi-Yau
subsection).
If the canonical bundle is big (µ = −1) Tian and Zhang have shown in [TZ], relying
on a work of Tsuji [Ts], that the Kähler-Ricci flow exists for times in the interval [0, T ),
where T := sup { t| (e−t − 1)c1(X) + e−t[ω] > 0 }. This means, that the flow exists in
the maximal possible time (for T ′ > T the form RicωT ′

does not make sense on the set
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ωnT ′ < 0). When KX is additionally nef (thus, in a weak sense, c1(X) ≤ 0) we obtain
T = +∞,and the flow exists for any t ∈ R+.
In the both cases it is important to understand the ”object” ωT which is the (suitably
understood) limit of ωt as t→ T−. Of course it cannot be a smooth form for otherwise in
the nef case it would be a Kähler-Einstein metric (contradicting the non-definiteness of
c1(X)) and in the finite T case the flow could be extended for larger times than T (due
to parabolic PDE theory), which is impossible.
By mixing geometric and PDE techniques Tian and Zhang [TZ] have shown, that the
current ωT is a smooth form outside some analytic set along which the class (e−T −
1)c1(X) + e−T [ω] degenerates. Similar results can be found in [EGZ], [CN], [ST1], [ST2],
[Ts] and [To]. PDE methods, however, do not give any information what happens on this
analytic set.
On the other hand for time T the equation reads

ωnT = e
∂uT
∂t

+uTωn.

If by ω̂T we denote the form (e−T − 1)Ricω + e−Tω, then the equation has the form

(ω̂T + i∂∂̄uT )n = e
∂uT
∂t

+uT f(ω̂T )n,

where the function f (with a slight abusement of notation) equals ωn

(bωT )n . If the form ω̂T
is semi-definite (which is often the case - see [TZ]), we obtain a typical Monge-Ampère
equation with big background form and uT ∈ PSH(X, ω̂T ). Since one can bound the Lp

norm of the right hand side in a relatively simple way for some p > 1 (see [TZ]), by the
theory developped in Section 3 we obtain the following corollary:

Corollary 4.1.5 ([TZ], [EGZ]). The potential uT is globally bounded.

Thus pluripotential theory allows one to understand better the behaviour of ωT on X.
Next we want to understand the regularity of uT . If KX is big and nef (T = ∞) it
follows from general geometric theory (see [TZ], [Z]), that there exists a holomorphic
mapping F : X → PN , (this is the associated map to |KX |, recall that F (X) may be
singular) such that ω̂∞ = F ∗ωFS (ωFS is the Fubini-Study form on PN). By Theorem
3.2.7 we get another corollary:

Corollary 4.1.6 ([Z], [DZ]). The potential u∞ is continuous on X (and smooth outside
some analytic set).

In the case T <∞ (i.e. if KX is only big) the continuity of the potential is still an open
problem, since there is no correspondent theorem of existence of such associated map (see
[Z]). In both cases, however, geometers expect the maximal possible regularity of uT , that
is uT ∈ C1,1 \ C2. Further analysis of singularities of uT (such as Hölder continuity) is
crucial for better understanding of the geometry of the space (X,ωT ). If T <∞ this is a
(pseudo)metric space which is not complete, and geometers expect (see [ST1], [ST2]), that
its completion (X,ωT ) should be some kind of bimeromorphic modification of X. There
is a conjecture (supported by some 2-dimensional computations and examples - see, for
example, [CN], [ST1]), that the Kähler-Ricci flow in the big KX case after finitely many
such modifications would lead to a manifold (or an analytic space with mild singularities)
Xcan on which KXcan is nef. Thus one would get a metric version of the famous minimal
model program from algebraic geometry.
Finally we would like to refer to the papers [T], [TZ], [TZh], [ST1], [ST2], [CN], [To],
[Ts], [EGZ] and [BEGZ], where one can find a much broader picture of the developed
ideas, and also one can see the connections between geometry and pluripotential theory.
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(2000).
[TZ] G.Tian and Z.Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese

Ann. of Math. (B), 27 (2006), 179-192.
[TZh] G.Tian and X.Zhu, Convergence of Kähler-Ricci flow, Journal AMS, 20 (2007), 675-699.
[To] V.Tosatti, Limits of Calabi-Yau metrics when the Kähler class degenerates, J.European Math.

Soc. to appear.
[Ts] H.Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties

of general type, Math. Ann. 281 (1988), 123-133.
[W1] J.Wiklund, Matrix inequalities and the complex Monge-Ampère operator, Ann. Polon. Math. 83

(2004) 211-220.
[W2] J.Wiklund, Pluricomplex charge at weak singularities, preprint arXiv:math/0510671.
[X1] Y.Xing, Continuity of the complex Monge-Ampère operator, Proc. AMS 124 (1996) 457-467.
[Y] S.T.Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère

equation, Comm. Pure Appl. Math. 31 (1978), (3), 339-411.
[Za] V.Zahariuta, Transfinite diameter, Cebysev constants and capacity for a compactum in Cn, (in

Russian) Math. USSR Sb. (N.S.) 138 (1975), 374-389.
[Z] Z.Zhang, On Degenerate Monge-Ampere Equations over Closed Kähler Manifolds, Int. Math.

Res. Not. (2006), 1-18.

62


